Growth rate for the expected value of a generalized random Fibonacci sequence

Type: Article

Publication Date: 2009-02-02

Citations: 3

DOI: https://doi.org/10.1088/1751-8113/42/8/085005

Abstract

We study the behaviour of generalized random Fibonacci sequences defined by the relation gn = |λgn−1 ± gn−2|, where the ± sign is given by tossing an unbalanced coin, giving probability p to the + sign. We prove that the expected value of gn grows exponentially fast for any 0 < p ⩽ 1 when λ ⩾ 2, and for any p > (2 − λ)/4 when λ is of the form 2cos(π/k) for some fixed integer k ⩾ 3. In both cases, we give an algebraic expression for the growth rate.

Locations

  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View
  • Journal of Physics A Mathematical and Theoretical - View

Similar Works

Action Title Year Authors
+ Novel Computation of the Growth Rate of Generalized Random Fibonacci Sequences 2011 Yueheng Lan
+ Exponential Growth of Random Fibonacci Sequences 1995 Peter B. Hope
+ PDF Chat Almost-sure growth rate of generalized random Fibonacci sequences 2010 Élise Janvresse
Benoît Rittaud
Thierry de la Rue
+ On the Average Growth Rate of Random Compositions of Fibonacci and Padovan Recurrences 2009 N. Gogin
Aleksandr Mylläri
+ On the growth rate of generalized Fibonacci numbers 2004 Fishkind Donniell E
+ An elementary proof that random Fibonacci sequences grow exponentially 2006 Eran Makover
Jeffrey McGowan
+ An elementary proof that random Fibonacci sequences grow exponentially 2005 Eran Makover
Jeffrey McGowan
+ On the Average Growth of Random Fibonacci Sequences 2007 Benoît Rittaud
+ The Asymptotic Growth Rate of Random Fibonacci Type Sequences II 2006 Hei-Chi Chan
+ Ratios of Generalized Fibonacci Numbers 2022 Alan F. Beardon
+ The generating function of the generalized Fibonacci sequence 2015 Armando Gonçalves
M. N. de Jesus
+ An Expression for Generalized Fibonacci Numbers 1966 David E. Ferguson
+ Growth of Random Sequences 2006 Kathleen J Austin
G. J. Rodgers
+ Fibonacci Numbers and Generalized Binomial Coefficients 1967 V. E. Hoggatt
+ Ratios of Generalized Fibonacci Sequences 1987 Thomas P. Dence
+ PDF Chat How do random Fibonacci sequences grow? 2007 Élise Janvresse
Benoît Rittaud
Thierry de la Rue
+ Return of Fibonacci random walks 2016 Jörg Neunhäuserer
+ A study on correlated exponential random walks 1986 T. M. John
K. P. N. Murthy
+ On the linear space of the two-sided generalized Fibonacci sequences 2023 M. W. Bunder
Joseph Tonien
+ PDF Chat Growing random sequences 2004 Ilia Krasikov
G. J. Rodgers
C E Tripp