Plünnecke’s Inequality for Different Summands

Type: Book-Chapter

Publication Date: 2008-01-01

Citations: 10

DOI: https://doi.org/10.1007/978-3-540-85221-6_10

Abstract

The aim of this paper is to prove a general version of Plünnecke's inequality. Namely, assume that for finite sets A, B 1 ,…,B k we have information on the size of the sumsets A+Bi 1+…+Bi l for all choices of indices i 1,…,i l . Then we prove the existence of a non-empty subset X of A such that we have good control' over the size of the sumset X+B 1+…+B k . As an application of this result we generalize an inequality of [1] concerning the submultiplicativity of cardinalities of sumsets.

Locations

  • Bolyai Society mathematical studies - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Plunnecke's inequality for different summands 2008 Katalin Gyarmati
Máté Matolcsi
Imre Z. Ruzsa
+ PDF Chat A superadditivity and submultiplicativity property for cardinalities of sumsets 2010 Katalin Gyarmati
Máté Matolcsi
Imre Z. Ruzsa
+ Plünnecke's Inequality 2011 Giorgis Petridis
+ Plünnecke's Inequality 2011 Giorgis Petridis
+ Plünnecke's Inequality 2011 Giorgis Petridis
+ Pl\"unnecke's Inequality 2011 Giorgis Petridis
+ Sums of Dilates 2008 Boris Bukh
+ PDF Chat Bounds for certain sums; a remark on a conjecture of Mahler 1961 Wolfgang M. Schmidt
+ PDF Chat Bounds for Certain Sums; A Remark on a Conjecture of Mahler 1961 Wolfgang M. Schmidt
+ A superadditivity and submultiplicativity property for cardinalities of sumsets 2007 Katalin Gyarmati
Imre Z. Ruzsa
Máté Matolcsi
+ PDF Chat A further refinement of Mordell's bound on exponential sums 2005 Todd Cochrane
Jeremy P. Coffelt
Christopher Pinner
+ Classical and modern approaches for Plünnecke-type inequalities 2015 Alberto Espuny Díaz
+ Inequalities for sums of multipowers 1990 Zsolt Páles
+ Sums of dilates 2007 Boris Bukh
+ Sums of dilates 2007 Boris Bukh
+ Inequalities for ordered sums 1986 H. A. David
+ Cramer's theorem for nonnegative summands 2005 Fima C. Klebaner
R. Liptser
+ Inequalities for Powers of Subset Sums: 10441 1998 Emre Alkan
Călin Popescu
+ A note on certain classes of finite sums 2024 Yılmaz Şimşek
+ A remark with regard to inequalities for some sums 2014 Simeunović Dragomir M.