Effect of Epitaxial Strain on the Spontaneous Polarization of Thin Film Ferroelectrics

Type: Article

Publication Date: 2005-12-12

Citations: 551

DOI: https://doi.org/10.1103/physrevlett.95.257601

Abstract

We investigate the variation of the spontaneous ferroelectric polarization with epitaxial strain for BaTiO$_3$, PbTiO$_3$, LiNbO$_3$, and BiFeO$_3$ using first principles calculations. We find that while the strain dependence of the polarization is very strong in the simple perovskite systems BaTiO$_3$ and PbTiO$_3$ it is only weak in LiNbO$_3$ and BiFeO$_3$. We show that this different behavior can be understood purely in terms of the piezoelectric and elastic constants of the unstrained bulk material, and we discuss several factors that determine the strain behavior of a certain material.

Locations

  • Physical Review Letters - View
  • arXiv (Cornell University) - View - PDF
  • Trinity's Access to Research Output (TARA) (Trinity College Dublin) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Role of ferroelectric polarization during growth of highly strained ferroelectric materials 2020 Rui Liu
Jeffrey G. Ulbrandt
Hsiang-Chun Hsing
Anna Gura
Benjamin Bein
Alec Sun
Charles Pan
Giulia Bertino
Amanda Lai
Kaize Cheng
+ PDF Chat First-principles study of epitaxial strain in perovskites 2005 Oswaldo Diéguez
Karin M. Rabe
David Vanderbilt
+ PDF Chat Suppressed Dependence of Polarization on Epitaxial Strain in Highly Polar Ferroelectrics 2007 Ho Nyung Lee
Serge Nakhmanson
Matthew F. Chisholm
Hans M. Christen
Karin M. Rabe
David Vanderbilt
+ Ferroelectricity of (111) epitaxially strained SrTiO$_3$ from first principles 2018 Sebastian E. Reyes‐Lillo
Karin M. Rabe
Jeffrey B. Neaton
+ PDF Chat First-principles modeling of strain in perovskite ferroelectric thin films 2008 Oswaldo Diéguez
David Vanderbilt
+ PDF Chat First-principles study of high-field piezoelectricity in tetragonal<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>PbTiO</mml:mtext></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> 2010 Anindya Roy
Massimiliano Stengel
David Vanderbilt
+ PDF Chat Computational study of (111) epitaxially strained ferroelectric perovskites<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>BaTiO</mml:mtext></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>PbTiO</mml:mtext></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> 2008 Riku Oja
Karen Johnston
Johannes Frantti
R. M. Nieminen
+ PDF Chat Strain-coupled ferroelectric polarization in BaTiO3–CaTiO3 superlattices 2009 S. S. A. Seo
Ho Nyung Lee
+ Enhanced polarization in strained BaTiO$_3$ from first principles 2002 Jeffrey B. Neaton
Chien-Lan Hsueh
Karin M. Rabe
+ Ferroelectricity in [111]-oriented epitaxially strained <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">SrTiO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> from first principles 2019 Sebastian E. Reyes‐Lillo
Karin M. Rabe
Jeffrey B. Neaton
+ PDF Chat Study of strain effect on in-plane polarization in epitaxial BiFeO<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:msub></mml:math>thin films using planar electrodes 2012 Zuhuang Chen
Xi Zou
Wei Ren
LĂŒ You
Chuanwei Huang
Yurong Yang
Ping Yang
Junling Wang
Thirumany Sritharan
L. BellaĂŻche
+ Strain effects on topological phases in (LaNiO$_3$)$_2$/(LaAlO$_3$)$_N$ heterostructures grown along the [111] direction 2013 Andreas RĂŒegg
Chandrima Mitra
Alexander A. Demkov
Gregory A. Fiete
+ Strain-Induced Polarization Enhancement in BaTiO$_3$ Core-Shell Nanoparticles 2023 Eugene A. Eliseev
Anna N. Morozovska
Sergei V. Kalinin
D. R. Evans
+ PDF Chat Stress Effects on Vibrational Spectra of a Cubic Hybrid Perovskite: A Probe of Local Strain 2020 Kuntal Talit
David A. Strubbe
+ Polarization Saturation in Strained Ferroelectrics 2008 Yanpeng Yao
Huaxiang Fu
+ PDF Chat Electrostriction coefficient of ferroelectric materials from <i>ab initio</i> computation 2016 Zhijun Jiang
R. Zhang
Fei Li
Li Jin
Nan Zhang
Dawei Wang
Chun‐Lin Jia
+ PDF Chat Theory of the structure of electronic polarization and its strain dependence in ferroelectric perovskites 2009 Yanpeng Yao
Huaxiang Fu
+ PDF Chat Strain-induced ferroelectricity in orthorhombic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>CaTiO</mml:mtext></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>from first principles 2009 Carl-Johan Eklund
Craig J. Fennie
Karin M. Rabe
+ PDF Chat Tailoring Lattice Strain and Ferroelectric Polarization of Epitaxial BaTiO3 Thin Films on Si(001) 2018 Jike Lyu
Ignasi Fina
RaĂșl Solanas
J. Fontcuberta
F. SĂĄnchez
+ Strain dependencies of energetic, structural, and polarization properties in tetragonal (PbTiO3)1/(SrTiO3)1 and (BaTiO3)1/(SrTiO3)1 superlattices: a comparative study with bulks 2010 Yanpeng Yao
Huaxiang Fu

Works That Cite This (77)

Action Title Year Authors
+ PDF Chat First-principles studies of multiferroic and magnetoelectric materials 2014 Yue‐Wen Fang
Hang‐Chen Ding
Wen‐Yi Tong
Wanjiao Zhu
Xin Shen
Shijing Gong
Xiangang Wan
Chun‐Gang Duan
+ PDF Chat Strain-Engineered Multiferroicity in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>P</mml:mi><mml:mi>n</mml:mi><mml:mi>m</mml:mi><mml:mi>a</mml:mi></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>NaMnF</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>Fluoroperovskite 2016 A. C. Garcia‐Castro
A. Romero
Éric Bousquet
+ PDF Chat Strain‐Sensitive Flexible Magnetoelectric Ceramic Nanocomposites 2023 Min‐Soo Kim
Donghoon Kim
Buse AktaƟ
Hongsoo Choi
Josep Puigmartí‐Luis
Bradley J. Nelson
Salvador Pané
Xiang‐Zhong Chen
+ PDF Chat Self-assembled line network in BiFeO3 thin films 2020 Baptiste Colson
VĂ­ctor Fuentes
Z. Konstantinović
D. Colson
A. Forget
N. Lazarević
M. Ơćepanović
Zoran Popović
Carlos Frontera
Ll. Balcells
+ PDF Chat Nontrivial magnetic field related phenomena in the singlelayer graphene on ferroelectric substrate (Review Article) 2020 М. В. Стріха
Anna N. Morozovska
Zhanna G. Zemska
+ PDF Chat Modeling functional piezoelectricity in perovskite superlattices with competing instabilities 2012 Charles Swartz
Xifan Wu
+ PDF Chat Influence of crystal structure on charge carrier effective masses in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>BiFeO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> 2019 J. Kane Shenton
David R. Bowler
Wei Li Cheah
+ PDF Chat Quantitative determination of anisotropic magnetoelectric coupling in BiFeO3–CoFe2O4 nanostructures 2010 Yoon Seok Oh
S. P. Crane
Haimei Zheng
Ying‐Hao Chu
R. Ramesh
Kee Hoon Kim
+ PDF Chat Fine tuning epitaxial strain in ferroelectrics: PbxSr1−xTiO3 on DyScO3 2010 Gijsbert Rispens
J. A. Heuver
Beatriz Noheda
+ PDF Chat Tuning the metal-insulator transition in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>d</mml:mi><mml:mn>1</mml:mn></mml:msup></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>d</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> perovskites by epitaxial strain: A first-principles-based study 2016 Gabriele Sclauzero
Krzysztof Dymkowski
Claude Ederer

Works Cited by This (11)

Action Title Year Authors
+ PDF Chat Projector augmented-wave method 1994 Peter E. Blöchl
+ PDF Chat Physics of thin-film ferroelectric oxides 2005 Matthew Dawber
Karin M. Rabe
J. F. Scott
+ PDF Chat Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory 2005 Xifan Wu
David Vanderbilt
D. R. Hamann
+ PDF Chat First-principles study of stability and vibrational properties of tetragonal<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">PbTiO</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> 1996 Alberto Garcı́a
David Vanderbilt
+ PDF Chat Comparison of the electronic structures and energetics of ferroelectric<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">LiNbO</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">LiTaO</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:
 1996 Iris Inbar
R. E. Cohen
+ PDF Chat Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices 2003 Jeffrey B. Neaton
Karin M. Rabe
+ PDF Chat First-principles study of epitaxial strain in perovskites 2005 Oswaldo Diéguez
Karin M. Rabe
David Vanderbilt
+ PDF Chat Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite 2005 Claude Ederer
Nicola A. Spaldin
+ PDF Chat Berry-phase theory of proper piezoelectric response 2000 David Vanderbilt
+ PDF Chat Epitaxially strained<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo>[</mml:mo><mml:mn>001</mml:mn><mml:mo>]</mml:mo><mml:mo>−</mml:mo><mml:mo>(</mml:mo><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">PbTiO</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:msub><mml:mrow
 2004 Claudia Bungaro
Karin M. Rabe