LCM-stability of power series extensions characterizes Dedekind domains

Type: Article

Publication Date: 1995-01-01

Citations: 3

DOI: https://doi.org/10.1090/s0002-9939-1995-1277104-5

Abstract

In this paper we prove the following main result. A (commutative integral) domain <italic>R</italic> is a Dedekind domain if and only if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R left-bracket left-bracket upper X right-bracket right-bracket subset-of upper T left-bracket left-bracket upper X right-bracket right-bracket"> <mml:semantics> <mml:mrow> <mml:mi>R</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">]</mml:mo> <mml:mo stretchy="false">]</mml:mo> <mml:mo>⊂</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">]</mml:mo> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">R[[X]] \subset T[[X]]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is LCM-stable for each domain <italic>T</italic> containing <italic>R</italic> as a subring.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat LCM-Stability of Power Series Extensions Characterizes Dedekind Domains 1995 John T. Condo
+ PDF Chat A new characterization of Dedekind domains 1971 E. W. Johnson
J. P. Lediaev
+ PDF Chat FCP $$\Delta $$-extensions of rings 2020 Gabriel Pıcavet
Martine Picavet-L’Hermitte
+ LCM-splitting sets in some ring extensions 2001 Tiberiu Dumitrescu
Muhammad Zafrullah
+ Flatness and LCM-stability of anti-integral extensions over Noetherian domains 2001 三男 金光
憲一 吉田
+ PDF Chat A note on Dedekind rings 1974 Ryûki Matsuda
+ A new characterization of GCD domains of formal power series 2022 Ahmed Hamed
+ LCM-stableness in ring extensions 1983 Hirohumi Uda
+ Flatness and lcm-stability of simple extensions over noetherian domains 1999 Misuo Kanemitsu
Takasi Sugatani
Ken-ichi Yoshida
+ Integrality and lcm-stableness of simple extensions over noetherian domains 1996 Mitsuo Kanemitsu
Junro Sato
Ken-ichi Yoshida
+ PDF Chat Algebraic extensions of power series rings 1981 Jimmy T. Arnold
+ PDF Chat TWO GENERALIZATIONS OF LCM-STABLE EXTENSIONS 2013 Gyu Whan Chang
Hwankoo Kim
Jung Wook Lim
+ PDF Chat The ring of integer-valued polynomials of a Dedekind domain 1990 Robert Gilmer
William Heinzer
David Lantz
William W. Smith
+ Note on LCM-stability of simple extensions of Noetherian domains 1998 Nobuharu Onoda
Takasi Sugatani
Ken-ichi Yoshida
+ PDF Chat A strong complement property of Dedekind domains 1975 Marion E. Moore
+ A Theorem of M.C.R. Butler for Dedekind Domains 1995 James D. Reid
C. Vinsonhaler
+ PDF Chat How changing 𝐷[[𝑥]] changes its quotient field 1971 Philip B. Sheldon
+ PDF Chat A Note on Dedekind Domains 1998 Shing Hing Man
+ Modules Over Dedekind Domains 2000 A. J. Berrick
M. E. Keating
+ PDF Chat A classification of all 𝐷 such that {𝐼𝑛𝑡}(𝐷) is a Prüfer domain 1998 K. Alan Loper