FCP $$\Delta $$-extensions of rings
FCP $$\Delta $$-extensions of rings
Abstract We consider ring extensions, whose set of all subextensions is stable under the formation of sums, the so-called $$\Delta $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Δ</mml:mi></mml:math> -extensions. An integrally closed extension has the $$\Delta $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Δ</mml:mi></mml:math> -property if and only it is a Prüfer extension. We then give characterizations of FCP $$\Delta …