Schrödinger equations: pointwise convergence to the initial data

Type: Article

Publication Date: 1988-01-01

Citations: 337

DOI: https://doi.org/10.1090/s0002-9939-1988-0934859-0

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u left-parenthesis x comma t right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">u(x,t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the solution of the Schrödinger equation with initial data <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the Sobolev space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Superscript s Baseline left-parenthesis bold upper R Superscript n Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>s</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^s}({{\mathbf {R}}^n})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s greater-than one half"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding="application/x-tex">s &gt; \frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The a.e. convergence of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u left-parenthesis x comma t right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">u(x,t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> follows from a weighted estimate of the maximal function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u asterisk left-parenthesis x comma t right-parenthesis equals su p Subscript t greater-than 0 Baseline StartAbsoluteValue u left-parenthesis x comma t right-parenthesis EndAbsoluteValue"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>su</mml:mtext> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>p</mml:mtext> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>t</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">u * (x,t) = {\text {su}}{{\text {p}}_{t &gt; 0}}|u(x,t)|</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Schrodinger Equations: Pointwise Convergence to the Initial Data 1988 Luis Vega
+ PDF Chat On the weighted estimate of the solution associated with the Schrödinger equation 1991 Si Lei Wang
+ Cauchy problem of nonlinear Schrödinger equation with initial data in Sobolev space 𝑊^{𝑠,𝑝} for 𝑝&lt;2 2010 Yi Zhou
+ Global existence for Schrödinger–Debye system for initial data with infinite 𝐿²-norm 2015 Adán J. Corcho
Lucas C. F. Ferreira
+ PDF Chat 𝐿^{𝑝} estimates for Schrödinger evolution equations 1985 Mikhaël Balabane
Hassan Emamirad
+ Probabilistic pointwise convergence problem of Schrödinger equations on manifolds 2021 Junfang Wang
Wei Yan
Xiangqian Yan
+ Pointwise convergence of solutions to Schrödinger equations 2007 Sanghyuk Lee
+ Local and global well-posedness for the critical Schrödinger-Debye system 2013 Adán J. Corcho
Filipe Oliveira
Jorge Drumond Silva
+ PDF Chat Schrödinger operator methods in the study of a certain nonlinear P.D.E 1983 Evans M. Harrell
Barry Simon
+ PDF Chat On a.e. convergence of solutions of hyperbolic equations to 𝐿^{𝑝}-initial data 1985 Alberto Ruiz
+ PDF Chat A note on decay property of nonlinear Schrödinger equations 2022 Chenjie Fan
Zehua Zhao
+ A Note on Almost Everywhere Convergence Along Tangential Curves to the Schrödinger Equation Initial Datum 2024 Javier Minguillón
+ PDF Chat A note on solutions of the Schrödinger equation 1993 Wolfhard Hansen
+ Pointwise convergence of solutions to Schrödinger type equations 2014 Chunjie Zhang
+ PDF Chat Homogenization of the Schrödinger-type equations: operator estimates with correctors 2022 T. A. Suslina
+ Convergence problem of Schrödinger equation in Fourier-Lebesgue spaces with rough data and random data 2021 Xiangqian Yan
Yajuan Zhao
Wei Yan
+ A note on the convergence to initial data of heat and Poisson equations 2012 Silvia Hartzstein
José L. Torrea
Beatriz Viviani
+ Pointwise convergence for the Schrödinger equation [After Xiumin Du and Ruixiang Zhang] 2023 Jonathan E. Hickman
+ On a sharp lower bound on the blow-up rate for the 𝐿² critical nonlinear Schrödinger equation 2005 Frank Merle
Pierre Raphaël
+ Focusing NLS Equation: Long-Time Dynamics of Step-Like Initial Data 2010 Anne Boutet de Monvel
Vladimir Kotlyarov
Dmitry Shepelsky