Uniqueness of Shalika Models

Type: Article

Publication Date: 2009-11-09

Citations: 17

DOI: https://doi.org/10.4153/cjm-2009-062-1

Abstract

Abstract Let 𝔽 q be a finite field of q elements, 𝓕 a p -adic field, and D a quaternion division algebra over 𝓕. This paper proves uniqueness of Shalika models for GL 2n (𝔽 q ) and GL 2n ( D ), and re-obtains uniqueness of Shalika models for GL 2n (𝔽 q ) and GL 2n (D), and re-obtains uniqueness of Shalika models for GL 2n (𝓕) for any n ∈ ℕ.

Locations

  • Canadian Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ Shalika models for general linear groups 2022 Itay Naor
+ PDF Chat Existence of Split Property in Quaternion Algebra Over Composite of Quadratic Fields 2023 Muhammad Faldiyan
Ema Carnia
Asep K. Supriatna
+ PDF Chat Kazhdan-Lusztig theory: Origin, development, influence, and some problems 2017 Nanhua Xi
+ PDF Chat Special Moufang sets of finite dimension 2024 Matthias Grüninger
+ PDF Chat Quaternion algebras and symbol algebras over algebraic number field K, with the degree [K:Q] even 2016 Diana Savin
+ PDF Chat Hua Structures and Proper Moufang Sets with Abelian Root Groups 2011 Yoav Segev
+ On quaternion algebra over the composite of quadratic number fields and over some dihedral fields 2018 Vincenzo Acciaro
Diana Savin
+ On quaternion algebras over some extensions of quadratic number fields 2020 Vincenzo Acciaro
Diana Savin
Mohammed Taous
Abdelkader Zekhnini
+ On quaternion algebras over some extensions of quadratic number fields 2020 Vincenzo Acciaro
Diana Savin
Mohammed Taous
Abdelkader Zekhnini
+ The Zero-divisors and the Unit Group of Quaternion Algebra Z_n[i,j,k] 2009 Lin Guang-ke
+ PDF Chat Distinguished Representations for $\rm{SL}_n(D)$ where $D$ is a quaternion division algebra over a $p$-adic field 2025 Kwangho Choiy
Shiv Prakash Patel
+ Prescribed Gauss decompositions for Kac-Moody groups over fields 2001 Jun Morita
Eugene Plotkin
+ Jordan division algebras 1979 E. I. Zel'manov
+ Uniqueness and presentation of Kac-Moody groups over fields 1987 Jacques Tits
+ PDF Chat Stability of Rankin-Selberg gamma factors for $\textrm{Sp}(2n)$, $\widetilde{ \textrm{Sp}}(2n)$ and $\textrm{U}(n,n)$ 2015 Qing Zhang
+ PDF Chat A Question on Splitting of Metaplectic Covers 2016 Shiv Prakash Patel
+ PDF Chat Some Fixed Points Results of Quadratic Functions in Split Quaternions 2016 Young Chel Kwun
Mobeen Munir
Waqas Nazeer
Shin Min Kang
+ PDF Chat On quaternion algebras over some extensions of quadratic number fields 2021 Vincenzo Acciaro
Diana Savin
Mohammed Taous
Abdelkader Zekhnini
+ The Brauer indecomposability of Scott modules and the quadratic group Qd(p) 2017 Shigeo Koshitani
İpek Tuvay
+ A question on splitting of metaplectic covers 2014 Shiv Prakash Patel

Works That Cite This (17)

Action Title Year Authors
+ $L$-functions of ${\mathrm{GL}}(2n):$ $p$-adic properties and non-vanishing of twists 2018 Mladen Dimitrov
Fabian Januszewski
A. Raghuram
+ On $p$-adic $L$-functions for $GL_{2n}$ in finite slope Shalika families 2021 Daniel Barrera Salazar
Mladen Dimitrov
Chris Williams
+ PDF Chat A local trace formula for the generalized Shalika model 2019 Raphaël Beuzart-Plessis
Chen Wan
+ Archimedean Non-vanishing, Cohomological Test Vectors, and Standard $L$-functions of $\mathrm{GL}_{2n}$: Complex Case 2019 Bingchen Lin
Fangyang Tian
+ PDF Chat Archimedean non-vanishing, cohomological test vectors, and standard L-functions of $${\mathrm {GL}}_{2n}$$: real case 2019 Cheng Chen
Dihua Jiang
Bingchen Lin
Fangyang Tian
+ Gelfand pairs<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi mathvariant="normal">Sp</mml:mi><mml:mrow><mml:mn>4</mml:mn><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi>F</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>,</mml:mo><mml:msub><mml:mi mathvariant="normal">Sp</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo stretchy… 2010 Lei Zhang
+ Shalika models and p-adic L-functions test 2014 Lennart Gehrmann
+ Local uniqueness of generalized Shalika models for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi mathvariant="normal">SO</mml:mi><mml:mrow><mml:mn>4</mml:mn><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math> 2009 Chufeng Nien
+ PDF Chat Symplectic supercuspidal representations of GL(2<i>n</i>) over<i>p</i>-adic fields 2010 Dihua Jiang
Chufeng Nien
Yujun Qin
+ <i>L</i>-functions of GL<sub>2<i>n</i></sub>: <i>p</i>-adic properties and non-vanishing of twists 2020 Mladen Dimitrov
Fabian Januszewski
A. Raghuram