Riemann’s zeta function and beyond

Type: Article

Publication Date: 2003-10-30

Citations: 64

DOI: https://doi.org/10.1090/s0273-0979-03-00995-9

Abstract

In recent years<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L"><mml:semantics><mml:mi>L</mml:mi><mml:annotation encoding="application/x-tex">L</mml:annotation></mml:semantics></mml:math></inline-formula>-functions and their analytic properties have assumed a central role in number theory and automorphic forms. In this expository article, we describe the two major methods for proving the analytic continuation and functional equations of<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L"><mml:semantics><mml:mi>L</mml:mi><mml:annotation encoding="application/x-tex">L</mml:annotation></mml:semantics></mml:math></inline-formula>-functions: the method of integral representations, and the method of Fourier expansions of Eisenstein series. Special attention is paid to technical properties, such as boundedness in vertical strips; these are essential in applying the converse theorem, a powerful tool that uses analytic properties of<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L"><mml:semantics><mml:mi>L</mml:mi><mml:annotation encoding="application/x-tex">L</mml:annotation></mml:semantics></mml:math></inline-formula>-functions to establish cases of Langlands functoriality conjectures. We conclude by describing striking recent results which rest upon the analytic properties of<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L"><mml:semantics><mml:mi>L</mml:mi><mml:annotation encoding="application/x-tex">L</mml:annotation></mml:semantics></mml:math></inline-formula>-functions.

Locations

  • arXiv (Cornell University) - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • Bulletin of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Riemann's Zeta Function and Beyond 2003 Stephen Gelbart
Stephen D. Miller
+ PDF Chat Exponential sums of Lerch’s zeta functions 1985 Kai Wang
+ PDF Chat Analytic continuation of Riemann’s zeta function and values at negative integers via Euler’s transformation of series 1994 Jonathan Sondow
+ On 𝑞-analogues of the Euler constant and Lerch’s limit formula 2003 Nobushige Kurokawa
Masato Wakayama
+ Explicit upper bounds for 𝐿-functions on the critical line 2009 Vorrapan Chandee
+ PDF Chat Some remarks concerning the number theoretic functions $\omega (n)$\ and $\Omega (n)$ 1973 Robert E. Dressler
J. Lune
+ On arithmetic nature of a 𝑞-Euler-double zeta values 2023 Tapas Chatterjee
Sonam Garg
+ PDF Chat Cauchy integral equalities and applications 1989 Boo Rim Choe
+ A theorem on zeta functions associated with polynomials 1999 Minking Eie
Kwang-Wu Chen
+ PDF Chat Functions of uniformly bounded characteristic on Riemann surfaces 1985 Shinji Yamashita
+ Characterizing Riemann’s Zeta Function 2023
+ On the Asymptotics to all Orders of the Riemann Zeta Function and of a Two-Parameter Generalization of the Riemann Zeta Function 2021 A. S. Fokas
Jonatan Lenells
+ Zeta functions 1991 Carlos Moreno
+ Counting zeros of Dedekind zeta functions 2021 Elchin Hasanalizade
Quanli Shen
Peng‐Jie Wong
+ Archimedean zeta integrals for 𝐺𝐿(3)×𝐺𝐿(2) 2022 Miki Hirano
Taku Ishii
Tadashi Miyazaki
+ PDF Chat Asymptotic values and Baire category 1973 Chaim Mida
+ Derivatives and asymptotics of Whittaker functions 2011 Nadir Matringe
+ PDF Chat The big Picard theorem for polyanalytic functions 1970 W. Bosch
P. Krajkiewicz
+ Exploring the Riemann Zeta Function 2017 Hugh L. Montgomery
Ashkan Nikeghbali
Michael Th. Rassias
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$q$" id="E1"><mml:mi>q</mml:mi></mml:math>-Riemann zeta function 2004 Taekyun Kim