Random matrix theory of the proximity effect in disordered wires

Type: Article

Publication Date: 2003-01-16

Citations: 5

DOI: https://doi.org/10.1103/physrevb.67.024410

Abstract

We study analytically the local density of states in a disordered normal-metal wire at ballistic distance to a superconductor. Our calculation is based on a scattering-matrix approach, which concerns for wave-function localisation in the normal metal, and extends beyond the conventional semiclassical theory based on Usadel and Eilenberger equations. We also analyse how a finite transparency of the NS interface modifies the spectral proximity effect and demonstrate that our results agree in the dirty diffusive limit with those obtained from the Usadel equation.

Locations

  • Physical review. B, Condensed matter - View
  • arXiv (Cornell University) - View - PDF
  • Lancaster EPrints (Lancaster University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Long range<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math>-wave proximity effect into a disordered metal 2015 Aydın Cem Keser
Valentin Stanev
Victor Galitski
+ PDF Chat SHOT NOISE AND PROXIMITY EFFECT IN SUPERCONDUCTOR-NORMAL-METAL HETEROSTRUCTURES 2003 Wolfgang Belzig
Johannes Börlin
Christoph Bruder
Yuli V. Nazarov
+ PDF Chat Excitation spectrum of mesoscopic proximity structures 2000 S. Pilgram
Wolfgang Belzig
Christoph Bruder
+ PDF Chat Diagrammatic theory of random scattering matrices for normal-metal–superconducting mesoscopic junctions 1996 Nathan Argaman
A. Zee
+ PDF Chat Microscopic theory of the proximity effect in superconductor-graphene nanostructures 2008 Pablo Burset
A. Levy Yeyati
A. Martín‐Rodero
+ PDF Chat Proximity effect in ferromagnet/superconductor hybrids: From diffusive to ballistic motion 2009 Jacob Linder
Malek Zareyan
Asle SudbĂž
+ PDF Chat Superconductive proximity effect in interacting disordered conductors 2001 M. A. Skvortsov
A. I. Larkin
M. V. Feigel’man
+ PDF Chat Scattering matrix approach to the description of quantum electron transport 2011 G. B. Lesovik
Ivan Sadovskyy
+ PDF Chat Proximity effect and multiple Andreev reflections in diffusive superconductor–normal-metal–superconductor junctions 2006 Juan Carlos Cuevas
Jan Hammer
J. Kopu
J. K. Viljas
Matthias Eschrig
+ Théorie des matrices aléatoires en physique statistique : théorie quantique de la diffusion et systÚmes désordonnés 2018 Aurélien Grabsch
+ PDF Chat Broadened Yu-Shiba-Rusinov states in dirty superconducting films and heterostructures 2022 S. S. Babkin
A. A. Lyublinskaya
I. S. Burmistrov
+ Shot Noise in Mesoscopic Diffusive Andreev Wires 2003 Wolfgang Belzig
+ PDF Chat Proximity effect in normal metal–high-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>T</mml:mi><mml:mi>c</mml:mi></mml:msub></mml:math>superconductor contacts 2004 Tomas Löfwander
+ Semiclassical Theory of Integrable and Rough Andreev Billiards 1999 W. Ihra
M. L. Leadbeater
José Luis Vega
Klaus Richter
+ PDF Chat Effective<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>σ</mml:mi></mml:math>Model Formulation for Two Interacting Electrons in a Disordered Metal 1996 Klaus M. Frahm
Axel MĂŒller–Groeling
Jean‐Louis Pichard
+ PDF Chat Positive current cross-correlations in a highly transparent normal-superconducting beam splitter due to synchronized Andreev and inverse Andreev reflections 2010 Axel Freyn
Martina Flöser
R. MĂ©lin
+ PDF Chat Transport and scattering in inhomogeneous quantum wires 2012 Nicholas Sedlmayr
Jan Peter Ohst
Ian Affleck
Jesko Sirker
Sebastian Eggert
+ PDF Chat Quasiclassical Eilenberger theory of the topological proximity effect in a superconducting nanowire 2014 Valentin Stanev
Victor Galitski
+ PDF Chat Inverse proximity effect in superconductors near ferromagnetic material 2001 Mika A. SillanpÀÀ
Tero T. HeikkilÀ
René Lindell
Pertti Hakonen
+ PDF Chat Landauer and Thouless Conductance: a Band Random Matrix Approach 1997 Giulio Casati
Italo Guarneri
Giulio Maspero