A CLASS OF EXPONENTIAL CONGRUENCES IN SEVERAL VARIABLES

Type: Article

Publication Date: 2004-07-01

Citations: 2

DOI: https://doi.org/10.4134/jkms.2004.41.4.717

Abstract

A problem raised by Selfridge and solved by Pomerance asks to find the pairs (a, b) of natural numbers for which <TEX>$2^a\;-\;2^b$</TEX> divides <TEX>$n^a\;-\;n^b$</TEX> for all integers n. Vajaitu and one of the authors have obtained a generalization which concerns elements <TEX>${\alpha}_1,\;{\cdots},\;{{\alpha}_{\kappa}}\;and\;{\beta}$</TEX> in the ring of integers A of a number field for which <TEX>${\Sigma{\kappa}{i=1}}{\alpha}_i{\beta}^{{\alpha}i}\;divides\;{\Sigma{\kappa}{i=1}}{\alpha}_i{z^{{\alpha}i}}\;for\;any\;z\;{\in}\;A$</TEX>. Here we obtain a further generalization, proving the corresponding finiteness results in a multidimensional setting.

Locations

  • Journal of the Korean Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ A Congruence for a Class of Exponential Numbers 1985 A. Kyriakoyssis
+ Exponential congruences (Number Theory and its Applications) 1998 Andrzej Schinzel
+ Exponential Congruences 2008
+ Exponential Congruences 2008
+ An Exponential Congruence of Mahler 1972 Melvyn B. Nathanson
+ An Exponential Congruence of Mahler 1972 Melvyn B. Nathanson
+ Investigations on some exponential congruences 2016 Arnab Bose
+ PDF Chat Systems of Exponential Congruences 1985 Andrzej Schinzel
+ Solution of Nathanson's Exponential Congruence 1979 Samuel S. Wagstaff
+ A Generalization of the Congruence &lt;tex-math&gt;$r^x \equiv x$&lt;/tex-math&gt; (mod p) 1961 Roger Osborn
+ PDF Chat A finiteness theorem for a class of exponential congruences 1999 Marian Vâjâitu
Alexandru Zaharescu
+ Congruence Families of Exponential Sums 1997 M. N. Huxley
Nigel Watt
+ Congruences for a class of eta-quotients and their applications 2022 Shashika Petta Mestrige
+ PDF Chat New congruences involving products of two binomial coefficients 2019 Guo-Shuai Mao
Zhi‐Wei Sun
+ CONGRUENCES WITH RESPECT TO A DOUBLE MODULUS 1969 GR.C. MOISIL
+ Congruences 1976 Tom M. Apostol
+ PDF Chat Solution of Nathanson’s exponential congruence 1979 Samuel S. Wagstaff
+ PDF Chat Congruences, Trees, and 𝑝-adic Integers 1997 Wolfgang M. Schmidt
C. L. Stewart
+ A generalization of Morley’s congruence 2015 Jianxin Liu
Hao Pan
Yong Zhang
+ On a class of prime-detecting congruences 1999 Temba Shonhiwa