Crystals and Liquid Crystals Confined to Curved Geometries

Type: Book-Chapter

Publication Date: 2016-04-29

Citations: 12

DOI: https://doi.org/10.1002/9781119220510.ch19

Abstract

Chapter 19 Crystals and Liquid Crystals Confined to Curved Geometries Vinzenz Koning, Vinzenz KoningSearch for more papers by this authorVincenzo Vitelli, Vincenzo VitelliSearch for more papers by this author Vinzenz Koning, Vinzenz KoningSearch for more papers by this authorVincenzo Vitelli, Vincenzo VitelliSearch for more papers by this author Book Editor(s):Alberto Fernandez-Nieves, Alberto Fernandez-Nieves School of Physics, Georgia Institute of Technology, Atlanta, GA, USSearch for more papers by this authorAntonio Manuel Puertas, Antonio Manuel Puertas School of Physics, Georgia Institute of Technology, Atlanta, GA, USSearch for more papers by this author First published: 29 April 2016 https://doi.org/10.1002/9781119220510.ch19Citations: 3 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat Summary The use of geometry has always been essential in our understanding of the physics of soft matter. This chapter discusses crystalline, and nematic or liquid crystalline. It also discusses the elasticity of crystals and liquid crystals, and provides a classification of the defects in the phases of matter. The chapter explores the fascinating coupling between defects and curvature, and elucidates the role of geometry in this subject. It talks about nematic droplets of toroidal shape. Besides splay and bend, there are two deformations possible in a three-dimensional nematic liquid crystal like twist and saddle-splay. Monte Carlo simulations of nematic shells on uniaxial and biaxial colloidal particles have shown the tendencies for defects to accumulate in the thinnest part and in regions of the highest curvature. Though topology does not prescribe any defects, there is frustration due to the geometric confinement. Citing Literature Fluids, Colloids and Soft Materials: An Introduction to Soft Matter Physics RelatedInformation

Locations

  • arXiv (Cornell University) - View - PDF
  • John Wiley & Sons, Inc. eBooks - View

Similar Works

Action Title Year Authors
+ Crystals and liquid crystals confined to curved geometries 2014 Vinzenz Koning
Vincenzo Vitelli
+ Introduction to topological defects: from liquid crystals to particle physics 2022 S茅bastien Fumeron
Bertrand Berche
+ The effect of curvature on cholesteric doughnuts 2016 Ana Fialho
N. R. Bernardino
Nuno M. Silvestre
M. M. Telo da Gama
+ PDF Chat Defects of liquid crystals with variable degree of orientation 2017 Onur Alper
Robert Hardt
Fanghua Lin
+ On the geometry of fracture and frustration 2014 Vinzenz Koning
+ PDF Chat Liquid Crystal Colloids 2017 Ivan I. Smalyukh
+ Nematic Order in Spherical Geometries 2010 Sharan Devaiah
+ Aspects of geometry and topology in liquid crystalline phases 2016 Thomas Machon
+ PDF Chat Preface: Special issue on mathematical study on liquid crystals and related topics: Statics and dynamics 2014 Jinhae Park
+ Liquid crystals and geodesics 1981 R. N. Thurston
F. J. Almgren
+ Defects in Nematic Liquid Crystals with Variable Degree of Orientation 1991 Epifanio G. Virga
+ PDF Chat Helfrich-Hurault elastic instabilities driven by geometrical frustration 2023 Christophe Blanc
Guillaume Durey
Randall D. Kamien
Teresa L贸pez-Le贸n
Maxim O. Lavrentovich
Lisa Tran
+ Continuum Theory for Liquid Crystals 2014 Iain W. Stewart
+ Equilibrium shapes of crystals attached to walls 1994 Roman Koteck媒
C. E. Pfister
+ PDF Chat Topological Defects as Nucleation Points of the Nematic--Isotropic Phase Transition in Liquid Crystal Shells 2024 Yucen Han
Jan P. F. Lagerwall
Apala Majumdar
+ Helfrich-Hurault elastic instabilities driven by geometrical frustration 2021 Christophe Blanc
Guillaume Durey
Randall D. Kamien
Teresa L贸pez-Le贸n
Maxim O. Lavrentovich
Lisa Tran
+ Modelling and computation of liquid crystals 2021 Wei Wang
Lei Zhang
Pingwen Zhang
+ liquid crystals and anisotropic melts 2004 J. D. Bernal
+ Numerics for Liquid Crystals with Variable Degree of Orientation 2015 Ricardo H. Nochetto
Shawn W. Walker
Wujun Zhang
+ PDF Chat Liquid Crystal Theory and Modelling: Discussion Meeting 2011 Apala Majumdar
N. J. Mottram