Full regularity of weak solutions to a class of nonlinear fluids in two dimensions -- stationary, periodic problem

Type: Article

Publication Date: 1997-01-01

Citations: 22

View

Locations

  • Commentationes Mathematicae Universitatis Carolinae - View

Similar Works

Action Title Year Authors
+ PDF Chat On periodic solutions for one-phase and two-phase problems of the Navier–Stokes equations 2020 Thomas Eiter
Mads Kyed
Yoshihiro Shibata
+ PDF Chat Long-Term Regularity of Two-Dimensional Navier--Stokes--Poisson Equations 2021 Changzhen Sun
+ Regularity of solutions to non-stationary Navier–Stokes equations 2019 Е. В. Амосова
+ PDF Chat Existence of Regular Time-Periodic Solutions to Shear-Thinning Fluids 2019 Anna Abbatiello
Paolo Maremonti
+ PDF Chat The existence and regularity of time-periodic solutions to the three-dimensional Navier–Stokes equations in the whole space 2014 Mads Kyed
+ PDF Chat Time Periodic Solution to the Two-phase Fluid Model With an External Force in a Periodic Domain 2022 Shanshan Guo
Yingyan Zhou
+ Strong and periodic solutions of Navier-Stokes equations, in 2D, with non-local viscosity 2022 Jorge Ferreira
João Paulo Andrade
Willian S. Panni
Mohammad Shahrouzi
+ Long-time behavior of periodic Navier-Stokes equations in critical spaces 2010 Jamel Benameur
Ridha Selmi
+ On the periodic Navier--Stokes equation: An elementary approach to existence and smoothness for all dimensions $n\geq 2$ 2020 Philipp J. di Dio
+ PDF Chat Regularity of solutions of nonlinear partial differential equations 1984 Chao-Jiang Xu
+ Topics in the regularity theory of the Navier-Stokes equations 2018 Tuan Pham
+ regularity of viscosity solutions for fully nonlinear parabolic equations 1999 Ning Zhu
+ Regularity of weak solutions of the compressible isentropic Navier-Stokes equation 2010 Boris Haspot
+ Partial regularity of a certain class of non-Newtonian fluids 2017 Zhong Tan
Jianfeng Zhou
+ PDF Chat Regularity of the Navier-Stokes equation in a thin periodic domain with large data 2006 Igor Kukavica
Mohammed Ziane
+ Regularity of weak solutions of the compressible isentropic Navier-Stokes equation 2010 Boris Haspot
+ Maximal regularity of the time-periodic Stokes operator on unbounded and bounded domains 2017 Yasunori Maekawa
Jonas Sauer
+ Partial Regularity of Stationary Navier-Stokes Systems under Natural Growth Condition 2019 Lianhua He
Zhong Tan
+ Regularity of weak solutions to magneto-micropolar fluid equations 2010 Baoquan Yuan
+ Almost periodic homogenization of a generalized Ladyzhenskaya model for incompressible viscous flow 2012 Hermann Douanla
Jean Louis Woukeng

Cited by (16)

Action Title Year Authors
+ PDF Chat None 2002 Petr Kaplický
Josef Málek
Jana Stará
+ Optimization of Steady Flows for Incompressible Viscous Fluids 2002 Josef Málek
Tomáš Roubı́ček
+ Hölder continuity of solutions for unsteady generalized Navier–Stokes equations with p(x,t)-power law in 2D 2022 Cholmin Sin
Evgenii S. Baranovskii
+ PDF Chat Campanato estimates for the generalized Stokes System 2013 Lars Diening
Petr Kaplický
Sebastian Schwarzacher
+ PDF Chat C1,α-regularity for electrorheological fluids in two dimensions 2007 Lars Diening
F. Ettwein
Michael Růžička
+ Global Analysis for the Fluids of a Power-Law Type 2001 Josef Málek
+ On Global Existence of Smooth Two-Dimensional Steady Flows for a Class of Non-Newtonian Fluids under Various Boundary Conditions 2002 Petr Kaplický
Josef Málek
Jana Stará
+ PDF Chat On the Existence of Classical Solution to the Steady Flows of Generalized Newtonian Fluid with Concentration Dependent Power-Law Index 2019 Anna Abbatiello
Miroslav Bulíček
Petr Kaplický
+ PDF Chat An elementary proof of uniqueness of particle trajectories for solutions of a class of shear-thinning non-Newtonian 2D fluids 2013 Luigi C. Berselli
Luca Bisconti
+ On the Existence, Uniqueness and $$C^{1,\gamma} (\bar{\Omega}) \cap W^{2,2}(\Omega)$$ Regularity for a Class of Shear-Thinning Fluids 2008 Francesca Crispo
Carlo R. Grisanti
+ Existence of local strong solutions for motions of electrorheological fluids in three dimensions 2007 F. Ettwein
Michael Růžička
+ Distributed control for a class of non-Newtonian fluids 2005 Thomas Slawig
+ PDF Chat The Existence of Strong Solution for Generalized Navier-Stokes Equations with<math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"><mi>p</mi><mfenced open="(" close=")"><mrow><mi>x</mi></mrow></mfenced></math>-Power Law under Dirichlet Boundary Conditions 2021 Cholmin Sin
+ Strong Solutions for Generalized Newtonian Fluids 2005 Lars Diening
Michael Růžička
+ Global-in-time Hölder continuity of the velocity gradients for fluids with shear-dependent viscosities 2002 Petr Kaplický
Josef Málek
Jana Stará
+ On time-discretizations for generalized Newtonian fluids 2002 Lars Diening
Andreas Prohl
Michael Růžička