Ask a Question

Prefer a chat interface with context about you and your work?

The Existence of Strong Solution for Generalized Navier-Stokes Equations with<math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"><mi>p</mi><mfenced open="(" close=")"><mrow><mi>x</mi></mrow></mfenced></math>-Power Law under Dirichlet Boundary Conditions

The Existence of Strong Solution for Generalized Navier-Stokes Equations with<math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"><mi>p</mi><mfenced open="(" close=")"><mrow><mi>x</mi></mrow></mfenced></math>-Power Law under Dirichlet Boundary Conditions

In this note, in 2D and 3D smooth bounded domain, we show the existence of strong solution for generalized Navier-Stokes equation modeling by <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"><mi>p</mi><mfenced open="(" close=")"><mrow><mi>x</mi></mrow></mfenced></math> -power law with Dirichlet boundary condition under the restriction <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3"><mfenced open="(" close=")"><mrow><mn>3</mn><mi>n</mi><mo>/</mo><mfenced open="(" close=")"><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mi>n</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mo>&lt;</mo><mi>p</mi><mfenced open="(" close=")"><mrow><mi>x</mi></mrow></mfenced><mo>&lt;</mo><mfenced open="(" close=")"><mrow><mn>2</mn><mfenced open="(" close=")"><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfenced><mo>/</mo><mfenced …