Infinite product identities for $L$-functions

Type: Article

Publication Date: 2005-07-01

Citations: 3

DOI: https://doi.org/10.1215/ijm/1258138225

Abstract

We establish certain infinite product identities for Dirichlet series twisted by Dirichlet characters and give examples where the products have meromorphic continuation to the whole complex plane.

Locations

  • Illinois Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ Dirichlet L-functions and character power sums 1970 Tom M. Apostol
+ Dirichlet Character Sums of Rational Functions 2005 Chun Liu
+ PDF Chat Some identities involving the Dirichlet L-function 2007 Zhefeng Xu
Wenpeng Zhang
+ PDF Chat Non-vanishing of Dirichlet $$L$$-functions with smooth conductors 2025 Sun‐Kai Leung
+ Some notes on identities for Dirichlet L-functions 2014 Rong Ma
Yanwen Zhang
Melchior GrĂŒtzmann
+ Dirichlet L-Functions 1993 Anatolij A. Karatsuba
Melvyn B. Nathanson
+ Sum of the Dirichlet L-functions over nontrivial zeros of another Dirichlet L-function 2010 Ramƫnas Garunkƥtis
Justas Kalpokas
Jörn Steuding
+ Calculation of Dirichlet L-Functions 1969 Robert Spira
+ Dirichlet Series Meromorphic in a Half-Plane 1945 H. D. Brunk
+ PDF Chat Irrationality of values of L-functions of Dirichlet characters 2020 Stéphane Fischler
+ Infinite series representations for Dirichlet L-functions at rational arguments 2017 Johann Franke
+ Some identities involving convolutions of Dirichlet characters and the Möbius function 2016 Arindam Roy
Alexandru Zaharescu
Mohammad Zaki
+ Finite sums of Toeplitz products on the Dirichlet space 2009 Young Joo Lee
+ On Dirichlet L-functions with periodic coefficients and Eisenstein series 2010 Emre Alkan
+ Distinct zeros of Dirichlet $L$-functions 2012 Xiaosheng Wu
+ Special values of $q$-gamma products 2018 Tanay Wakhare
+ Special values of $q$-gamma products 2018 Tanay Wakhare
+ Exponential sums with the Dirichlet coefficients of Rankin–Selberg L-functions 2024 Guangshi LĂŒ
Qiang Ma
+ PDF Chat Nonvanishing of Dirichlet $L$-functions with smooth conductors 2024 Sun-Kai Leung
+ Dirichlet Series and Euler Products 1976 Tom M. Apostol