Split Orthogonal Group: A Guiding Principle for Sign-Problem-Free Fermionic Simulations

Type: Article

Publication Date: 2015-12-17

Citations: 74

DOI: https://doi.org/10.1103/physrevlett.115.250601

Abstract

We present a guiding principle for designing fermionic Hamiltonians and quantum Monte Carlo (QMC) methods that are free from the infamous sign problem by exploiting the Lie groups and Lie algebras that appear naturally in the Monte Carlo weight of fermionic QMC simulations. Specifically, rigorous mathematical constraints on the determinants involving matrices that lie in the split orthogonal group provide a guideline for sign-free simulations of fermionic models on bipartite lattices. This guiding principle not only unifies the recent solutions of the sign problem based on the continuous-time quantum Monte Carlo methods and the Majorana representation, but also suggests new efficient algorithms to simulate physical systems that were previously prohibitive because of the sign problem.

Locations

  • Physical Review Letters - View
  • Repository of the Academy's Library (Library of the Hungarian Academy of Sciences) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Solving the fermion sign problem in quantum Monte Carlo simulations by Majorana representation 2015 Zi-Xiang Li
Yiā€Fan Jiang
Hong Yao
+ PDF Chat Majorana-Time-Reversal Symmetries: A Fundamental Principle for Sign-Problem-Free Quantum Monte Carlo Simulations 2016 Zi-Xiang Li
Yiā€Fan Jiang
Hong Yao
+ Sign Problem in Quantum Monte Carlo Simulation 2022 Gaopei Pan
Zi Yang Meng
+ PDF Chat Determining quantum Monte Carlo simulability with geometric phases 2021 Itay Hen
+ PDF Chat Sign-Problem-Free Fermionic Quantum Monte Carlo: Developments and Applications 2018 Zi-Xiang Li
Hong Yao
+ PDF Chat Fusing matrix-product states with quantum Monte Carlo: reducing entanglement and sign problem at the same time 2024 Gunnar Bollmark
Sam Mardazad
Johannes S. Hofmann
Adrian Kantian
+ PDF Chat Pfaffian quantum Monte Carlo: solution to Majorana sign ambiguity and applications 2024 Ze-Yao Han
Zhouā€Quan Wan
Hong Yao
+ Quantum Monte Carlo for Gauge Fields and Matter without the Fermion Determinant 2023 Debasish Banerjee
Emilie Huffman
+ PDF Chat Intrinsic sign problem in fermionic and bosonic chiral topological matter 2020 Omri Golan
Adam Smith
Zohar Ringel
+ PDF Chat Majorana Positivity and the Fermion Sign Problem of Quantum Monte Carlo Simulations 2016 Z. C. Wei
Congjun Wu
Yi Li
Shiwei Zhang
Tao Xiang
+ PDF Chat Clifford circuits Augmented Matrix Product States for fermion systems 2024 Jiale Huang
Xiangjian Qian
Mingpu Qin
+ PDF Chat Efficient continuous-time quantum Monte Carlo method for the ground state of correlated fermions 2015 Lei Wang
Mauro Iazzi
Philippe Corboz
Matthias Troyer
+ PDF Chat Overcoming the Fermion Sign Problem in Homogeneous Systems 2017 Jonathan Dubois
Ethan Brown
Berni J. Alder
+ PDF Chat Sufficient condition for absence of the sign problem in the fermionic quantum Monte Carlo algorithm 2005 Congjun Wu
Shengbai Zhang
+ A fermionic quantum Monte-Carlo algorithm without the sign problem 2004 Congjun Wu
Shengbai Zhang
+ PDF Chat On the computational complexity of curing non-stoquastic Hamiltonians 2019 Milad Marvian
Daniel A. Lidar
Itay Hen
+ PDF Chat Cluster-Algorithm-Amenable Models of Gauge Fields and Matter 2024 Emilie Huffman
Debasish Banerjee
+ Cluster-Algorithm-Amenable Models of Gauge Fields and Matter 2023 Emilie Huffman
+ PDF Chat Lattice gauge theory simulations in the quantum information era 2016 Marcello Dalmonte
Simone Montangero
+ Quantum Simulations of SO(5) Many-Fermion Systems using Qudits 2023 Marc Illa
Caroline Robin
Martin J. Savage

Works That Cite This (68)

Action Title Year Authors
+ PDF Chat Report on 2210.05871v1 2022 Stephan Humeniuk
Yuan Wan
Lei Wang
+ PDF Chat A lattice pairing-field approach to ultracold Fermi gases 2024 Florian Ehmann
JoaquĆ­n E. Drut
Jens Braun
+ PDF Chat Finite-temperature auxiliary-field quantum Monte Carlo: Self-consistent constraint and systematic approach to low temperatures 2019 Yuan-Yao He
Mingpu Qin
Hao Shi
Zhong-Yi Lu
Shiwei Zhang
+ PDF Chat Mott transition in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ļ€</mml:mi></mml:math> -flux <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>S</mml:mi><mml:mi>U</mml:mi><mml:mo>(</mml:mo><mml:mn>4</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math> Hubbard model on a square lattice 2018 Zhichao Zhou
Congjun Wu
Yu Wang
+ A perspective on machine learning and data science for strongly correlated electron problems 2022 Steven Johnston
Ehsan Khatami
Richard Scalettar
+ PDF Chat The sign problem in quantum Monte Carlo simulations 2023 Gaopei Pan
Zi Yang Meng
+ PDF Chat Lowest energy states of an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>N</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math> fermionic chain 2020 Tigran Hakobyan
+ PDF Chat Thermal Ising transitions in the vicinity of two-dimensional quantum critical points 2016 Stephan HeƟelmann
Stefan WeƟel
+ PDF Chat Fermion sign bounds theory in quantum Monte Carlo simulation 2022 Xu Zhang
Gaopei Pan
Xiao Yan Xu
Zi Yang Meng
+ Quantum Monte Carlo simulations of thermodynamic properties of attractive SU($3$) Dirac fermions 2021 Xiang Li
Xu Han
Yu Wang

Works Cited by This (41)

Action Title Year Authors
+ PDF Chat Topological insulators and superconductors: tenfold way and dimensional hierarchy 2010 Shinsei Ryu
Andreas P. Schnyder
Akira Furusaki
Andreas W. W. Ludwig
+ PDF Chat Fidelity Susceptibility Made Simple: A Unified Quantum Monte Carlo Approach 2015 Lei Wang
Ye-Hua Liu
Jakub ImriŔka
Ping Nang
Matthias Troyer
+ PDF Chat Efficient continuous-time quantum Monte Carlo method for the ground state of correlated fermions 2015 Lei Wang
Mauro Iazzi
Philippe Corboz
Matthias Troyer
+ PDF Chat Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures 1997 Alexander Altland
Martin R. Zirnbauer
+ PDF Chat NĆ©el temperature and thermodynamics of the half-filled three-dimensional Hubbard model by diagrammatic determinant Monte Carlo 2013 Evgeny Kozik
Evgeni Burovski
V. W. Scarola
Matthias Troyer
+ PDF Chat Fermion sign problem: Decoupling transformation and simulation algorithm 1993 G. G. Batrouni
Philippe de Forcrand
+ PDF Chat Efficient continuous-time quantum Monte Carlo algorithm for fermionic lattice models 2015 Mauro Iazzi
Matthias Troyer
+ PDF Chat Solving the fermion sign problem in quantum Monte Carlo simulations by Majorana representation 2015 Zi-Xiang Li
Yiā€Fan Jiang
Hong Yao
+ PDF Chat Orbital Order in Mott Insulators of Spinless<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi></mml:math>-Band Fermions 2008 Erhai Zhao
Wen-Yuan Liu
+ PDF Chat Classification of topological insulators and superconductors in three spatial dimensions 2008 Andreas P. Schnyder
Shinsei Ryu
Akira Furusaki
Andreas W. W. Ludwig