Extension of Fourier ๐ฟ^{๐‘}โ€”๐ฟ^{๐‘ž} multipliers

Type: Article

Publication Date: 1975-01-01

Citations: 3

DOI: https://doi.org/10.1090/s0002-9947-1975-0390652-7

Abstract

By <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M Subscript p Superscript q Baseline left-parenthesis normal upper Gamma right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mi>p</mml:mi> <mml:mi>q</mml:mi> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">ฮ“<!-- ฮ“ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">M_p^q(\Gamma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we denote the space of Fourier <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript p Baseline minus upper L Superscript q"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:mo>โˆ’<!-- โˆ’ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>q</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^p} - {L^q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> multipliers on the LCA group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma"> <mml:semantics> <mml:mi mathvariant="normal">ฮ“<!-- ฮ“ --></mml:mi> <mml:annotation encoding="application/x-tex">\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. K. de Leeuw [4] (for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma equals upper R Superscript a"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">ฮ“<!-- ฮ“ --></mml:mi> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>a</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\Gamma = {R^a}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>), <italic>N</italic>. Lohouรฉ [16] and S. Saeki [19] have shown that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma 0"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">ฮ“<!-- ฮ“ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Gamma _0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a closed subgroup of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma"> <mml:semantics> <mml:mi mathvariant="normal">ฮ“<!-- ฮ“ --></mml:mi> <mml:annotation encoding="application/x-tex">\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi"> <mml:semantics> <mml:mi>ฯ•<!-- ฯ• --></mml:mi> <mml:annotation encoding="application/x-tex">\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a continuous function in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M Subscript p Superscript p Baseline left-parenthesis normal upper Gamma right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mi>p</mml:mi> <mml:mi>p</mml:mi> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">ฮ“<!-- ฮ“ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">M_p^p(\Gamma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then the restriction <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi 0"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>ฯ•<!-- ฯ• --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\phi _0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi"> <mml:semantics> <mml:mi>ฯ•<!-- ฯ• --></mml:mi> <mml:annotation encoding="application/x-tex">\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma 0"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">ฮ“<!-- ฮ“ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Gamma _0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M Subscript p Superscript p Baseline left-parenthesis normal upper Gamma 0 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mi>p</mml:mi> <mml:mi>p</mml:mi> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">ฮ“<!-- ฮ“ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">M_p^p({\Gamma _0})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-vertical-bar phi 0 double-vertical-bar Subscript upper M Sub Subscript p Sub Superscript p Baseline less-than-or-slanted-equals double-vertical-bar phi double-vertical-bar Subscript upper M Sub Subscript p Sub Superscript p"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow> <mml:mo symmetric="true">โ€–</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>ฯ•<!-- ฯ• --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:mrow> <mml:mo symmetric="true">โ€–</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mi>p</mml:mi> <mml:mi>p</mml:mi> </mml:msubsup> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>โฉฝ<!-- โฉฝ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow> <mml:mo symmetric="true">โ€–</mml:mo> <mml:mi>ฯ•<!-- ฯ• --></mml:mi> <mml:mo symmetric="true">โ€–</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mi>p</mml:mi> <mml:mi>p</mml:mi> </mml:msubsup> </mml:mrow> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\left \| {{\phi _0}} \right \|_{M_p^p}} \leqslant {\left \| \phi \right \|_{M_p^p}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We answer here a natural question arising from this result: we show that every continuous function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="psi"> <mml:semantics> <mml:mi>ฯˆ<!-- ฯˆ --></mml:mi> <mml:annotation encoding="application/x-tex">\psi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M Subscript p Superscript p Baseline left-parenthesis normal upper Gamma right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mi>p</mml:mi> <mml:mi>p</mml:mi> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">ฮ“<!-- ฮ“ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">M_p^p(\Gamma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the restriction to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma 0"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">ฮ“<!-- ฮ“ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Gamma _0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a continuous <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M Subscript p Superscript p Baseline left-parenthesis normal upper Gamma right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mi>p</mml:mi> <mml:mi>p</mml:mi> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">ฮ“<!-- ฮ“ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">M_p^p(\Gamma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> function whose norm is the same as that of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="psi"> <mml:semantics> <mml:mi>ฯˆ<!-- ฯˆ --></mml:mi> <mml:annotation encoding="application/x-tex">\psi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. A Figร -Talamanca and G. I. Gaudry [8] proved this with the extra condition that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma 0"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">ฮ“<!-- ฮ“ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Gamma _0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be discrete: our technique develops their ideas. An extension theorem for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M Subscript p Superscript q Baseline left-parenthesis normal upper Gamma 0 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mi>p</mml:mi> <mml:mi>q</mml:mi> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">ฮ“<!-- ฮ“ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">M_p^q({\Gamma _0})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is obtained: this complements work of Gaudry [11] on restrictions of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M Subscript p Superscript q Baseline left-parenthesis normal upper Gamma right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mi>p</mml:mi> <mml:mi>q</mml:mi> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">ฮ“<!-- ฮ“ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">M_p^q(\Gamma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-functions to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma 0"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">ฮ“<!-- ฮ“ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Gamma _0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On the characterization of ๐ป^{๐‘}(๐‘…โฟ) in terms of Fourier multipliers 1990 Akihito Uchiyama
+ PDF Chat ๐‘Š^{๐‘}-spaces and Fourier transform 1994 R. S. Pathak
Santosh Kumar Upadhyay
+ Restriction and extension of Fourier multipliers between weighted ๐ฟ^{๐‘} spaces on โ„โฟ and ๐•‹โฟ 2008 Kenneth Andersen
Parasar Mohanty
+ PDF Chat Approximation of multipliers 1974 Garth I. Gaudry
Ian Inglis
+ Marcinkiewiczโ€™s theorem on operator multipliers of Fourier series 2003 Milutin R. Dostaniฤ‡
+ PDF Chat A multiplier theorem for Fourier transforms 1974 James Dougal Mccall
+ PDF Chat An approximation for โˆซ^{โˆž}แตช๐‘’^{-๐‘ก2/2}๐‘ก^{๐‘}๐‘‘๐‘ก, ๐œ’&gt;0, ๐‘ real 1978 A. R. DiDonato
+ PDF Chat Cesร ro means of Fourier transforms and multipliers on ๐ฟยน(๐‘…) 1994 Dฤƒng Vลฉ Giang
Ferenc Mรณricz
+ PDF Chat What strong monotonicity condition on Fourier coefficients can make the ratio โ€–๐‘“-๐‘†_{๐‘›}(๐‘“)โ€–/๐ธ_{๐‘›}(๐‘“) be bounded? 1994 S. P. Zhou
+ PDF Chat Band-limited functions: ๐ฟ^{๐‘}-convergence 1989 Juan Antonio Barcelรณ
Antonio Cรณrdoba
+ PDF Chat On Fourier transforms 1974 C. Nasim
+ PDF Chat A multiplier relation for Calderรณn-Zygmund operators on ๐ฟยน({โ„}โฟ) 1999 Jonathan Bennett
+ PDF Chat Functions which are Fourier-Stieltjes transforms 1971 Stephen H. Friedberg
+ PDF Chat The spectrum (๐‘ƒโˆง๐ต๐‘ƒโŸจ2โŸฉ)_{-โˆž} 1986 Donald M. Davis
David C. Johnson
John Klippenstein
Mark Mahowald
Steven Wegmann
+ Asymptotic behavior of ๐ฟ^{๐‘} estimates for a class of multipliers with homogeneous unimodular symbols 2022 Aleksandar Bulj
Vjekoslav Kovaฤ
+ PDF Chat Identities for series of the type ฮฃ๐‘“(๐‘›)๐œ‡(๐‘›)๐‘›^{-๐‘ } 1973 Tom M. Apostol
+ PDF Chat On (๐ฟ^{๐‘๐‘œ}(๐ดโ‚’),๐ฟ^{๐‘โ‚}(๐ดโ‚))_{๐œƒ},_{๐‘ž} 1974 Michael ฤ†wikel
+ PDF Chat Multipliers of families of Cauchy-Stieltjes transforms 1992 Rita A. Hibschweiler
Thomas H. MacGregor
+ PDF Chat Solving integral equations by ๐ฟ and ๐ฟโปยน operators 1971 Charles Fox
+ PDF Chat On ฮ”(๐‘ฅ,๐‘›)=๐œ™(๐‘ฅ,๐‘›) -๐‘ฅ๐œ™(๐‘›)/๐‘› 1974 D. Suryanarayana