On Harish-Chandra’s $\mu $-function for $p$-adic groups

Type: Article

Publication Date: 1980-01-01

Citations: 3

DOI: https://doi.org/10.1090/s0002-9947-1980-0570781-7

Abstract

The Harish-Chandra <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu"> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding="application/x-tex">\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-function is, up to known constant factors, the Plancherel’s measure associated to an induced series of representations. In this paper we show that, when the series is induced from special representations lifted to a parabolic subgroup, the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu"> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding="application/x-tex">\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-function is a quotient of translated <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu"> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding="application/x-tex">\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-functions associated to series induced from supercuspidal representations. It is now known, in both the real and <italic>p</italic>-adic cases, that the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu"> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding="application/x-tex">\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-function is always an Euler factor.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ On 𝑝-adic 𝐿-functions for Hilbert modular forms 2024 John Bergdall
David J. Hansen
+ On the Ramanujan conjecture for automorphic forms over function fields I. Geometry 2020 Will Sawin
Nicolas Templier
+ On square-integrable representations of classical 𝑝-adic groups II 2000 Chris Jantzen
+ PDF Chat A Plancherel formula for parabolic subgroups 1990 Mie Nakata
+ Bessel periods and anticyclotomic 𝑝-adic spinor 𝐿-functions 2024 Ming-Lun Hsieh
Shunsuke Yamana
+ Simple Supercuspidal 𝐿-Packets of Quasi-Split Classical Groups 2024 Masao Oi
+ Duality for classical 𝑝-adic groups: The half-integral case 2018 Chris Jantzen
+ The special values of the standard 𝐿-functions for 𝐺𝑆𝑝_{2𝑛}×𝐺𝐿₁ 2021 Shuji Horinaga
Ameya Pitale
Abhishek Saha
Ralf Schmidt
+ Intertwining maps between 𝑝-adic principal series of 𝑝-adic groups 2021 Dubravka Ban
Joseph Hundley
+ Modular units from quotients of Rogers-Ramanujan type 𝑞-series 2016 Hannah Larson
+ Construction of discrete series for classical 𝑝-adic groups 2002 Colette Mœglin
Marko Tadić
+ PDF Chat Langlands program and Ramanujan Conjecture: A survey 2021 Luis Lomelí
+ PDF Chat Perturbation theory for the Laplacian on automorphic functions 1992 Ralph S. Phillips
Peter Sarnak
+ Constant term of Eisenstein integrals on a reductive 𝑝-adic symmetric space 2014 Jacques Carmona
Patrick Delorme
+ ν-tempered representations of p-adic groups, I: l-adic case 2005 Jean-François Dat
+ On Harish-Chandra's μ-Function for p-Adic Groups 1980 Allan J. Silberger
+ PDF Chat The unicity of types for depth-zero supercuspidal representations 2017 Peter Latham
+ Cusp forms for reductive symmetric spaces of split rank one 2017 Erik P. van den Ban
Job J. Kuit
+ PDF Chat Some consequences of Harish-Chandra’s submersion principle 1993 Cary Rader
Allan J. Silberger
+ PDF Chat Strong multiplicity theorems for 𝐺𝐿(𝑛) 1987 George T. Gilbert