Harmonic maps and representations of non-uniform lattices of {\rm PU}(m,1)

Type: Article

Publication Date: 2008-01-01

Citations: 38

DOI: https://doi.org/10.5802/aif.2359

Abstract

We study representations of lattices of PU (m,1) into PU (n,1). We show that if a representation is reductive and if m is at least 2, then there exists a finite energy harmonic equivariant map from complex hyperbolic m-space to complex hyperbolic n-space. This allows us to give a differential geometric proof of rigidity results obtained by M. Burger and A. Iozzi. We also define a new invariant associated to representations into PU (n,1) of non-uniform lattices in PU (1,1), and more generally of fundamental groups of orientable surfaces of finite topological type and negative Euler characteristic. We prove that this invariant is bounded by a constant depending only on the Euler characteristic of the surface and we give a complete characterization of representations with maximal invariant, thus generalizing the results of D. Toledo for uniform lattices.

Locations

  • French digital mathematics library (Numdam) - View - PDF
  • Annales de l’institut Fourier - View - PDF

Similar Works

Action Title Year Authors
+ Harmonic maps and representations of non-uniform lattices of PU(m,1) 2003 Vincent Koziarz
Julien Maubon
+ Numerical invariants and volume rigidity for hyperbolic lattices 2018 Alessio Savini
+ PDF Chat A MATSUMOTO–MOSTOW RESULT FOR ZIMMER’S COCYCLES OF HYPERBOLIC LATTICES 2020 Marco Moraschini
Alessio Savini
+ Maximal representations of uniform complex hyperbolic lattices 2015 Vincent Koziarz
Julien Maubon
+ PDF Chat Harmonic maps of infinite energy and rigidity results for representations of fundamental groups of quasiprojective varieties 1997 Jürgen Jost
Kang Zuo
+ PDF Chat Representations of complex hyperbolic lattices into rank 2 classical Lie groups of Hermitian type 2008 Vincent Koziarz
Julien Maubon
+ PDF Chat Maximal representations, non-Archimedean Siegel spaces, and buildings 2017 Marc Burger
Maria Beatrice Pozzetti
+ PDF Chat Maximal representations of uniform complex hyperbolic lattices 2017 Vincent Koziarz
Julien Maubon
+ Local rigidity for complex hyperbolic lattices and Hodge theory 2010 Bruno Klingler
+ Integrable measure equivalence and rigidity of hyperbolic lattices 2010 Uri Bader
Alex Furman
Roman Sauer
+ Representations of complex hyperbolic lattices into rank 2 classical Lie groups of Hermitian type 2007 Vincent Koziarz
Julien Maubon
+ PDF Chat Constant energy families of harmonic maps 2024 Ognjen Tošić
+ The $L^2$-torsion for representations of hyperbolic lattices 2020 Benjamin Waßermann
+ Eichler-Shimura isomorphism for complex hyperbolic lattices 2013 Инканг Ким
Genkai Zhang
+ Maximal representations of complex hyperbolic lattices in SU(m,n) 2014 Maria Beatrice Pozzetti
+ The $L^2$-torsion for representations of hyperbolic lattices 2020 Benjamin Waßermann
+ PDF Chat A construction of representations of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>3</mml:mn></mml:math>-manifold groups into <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">PU</mml:mi><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math> through Lefschetz fibrations 2023 Ruben Dashyan
+ PDF Chat Periodic cycle functions and cocycle rigidity for certain partially hyperbolic $\mathbb R^k$ actions 2005 Danijela Damjanović
Anatole Katok
+ Integrable measure equivalence and rigidity of hyperbolic lattices 2010 Uri Bader
Alex Furman
Roman Sauer
+ PDF Chat A note on complex hyperbolic lattices and strict hyperbolization 2024 Kejia Zhu