Ask a Question

Prefer a chat interface with context about you and your work?

A construction of representations of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>3</mml:mn></mml:math>-manifold groups into <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">PU</mml:mi><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math> through Lefschetz fibrations

A construction of representations of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>3</mml:mn></mml:math>-manifold groups into <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">PU</mml:mi><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math> through Lefschetz fibrations

We obtain infinitely many (non-conjugate) representations of 3-manifold fundamental groups into a lattice in the holomorphic isometry group of complex hyperbolic space. The lattice is an orbifold fundamental group of a branched covering of the projective plane along an arrangement of hyperplanes constructed by Hirzebruch. The 3-manifolds are related to …