New bounds for Szemeredi's theorem, Ia: Progressions of length 4 in finite field geometries revisited

Type: Preprint

Publication Date: 2012-01-01

Citations: 7

DOI: https://doi.org/10.48550/arxiv.1205.1330

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat New bounds for Szemerédi's theorem, I: progressions of length 4 in finite field geometries 2008 Ben Green
Terence Tao
+ New bounds for Szemeredi's theorem, II: A new bound for $r_4(N)$ 2006 Ben Green
Terence Tao
+ New bounds for Szemerédi's theorem, III: A polylogarithmic bound for $r_4(N)$ 2017 Ben Green
Terence Tao
+ PDF Chat Improving Behrend's construction: Sets without arithmetic progressions in integers and over finite fields 2024 Christian Elsholtz
Zach Hunter
Laura Proske
Lisa Sauermann
+ PDF NEW BOUNDS FOR SZEMERÉDI'S THEOREM, III: A POLYLOGARITHMIC BOUND FOR 2017 Ben Green
Terence Tao
+ Sets without $k$-term progressions can have many shorter progressions 2019 Jacob Fox
Cosmin Pohoata
+ Sets without $k$-term progressions can have many shorter progressions 2019 Jacob Fox
Cosmin Pohoata
+ Further bounds in the polynomial Szemerédi theorem over finite fields 2019 Borys Kuca
+ PDF Sets without <i>k</i>‐term progressions can have many shorter progressions 2020 Jacob Fox
Cosmin Pohoata
+ A Constructive Lower Bound on Szemerédi's Theorem 2017 Vladislav Taranchuk
+ Caps and progression-free sets in $\mathbb{Z}_m^n$ 2019 Christian Elsholtz
PĂ©ter PĂĄl Pach
+ Caps and progression-free sets in $\mathbb{Z}_m^n$ 2019 Christian Elsholtz
PĂ©ter PĂĄl Pach
+ A generalization of sets without long arithmetic progressions based on Szekeres algorithm 2013 Xiaodong Xu
+ PDF Chat ON A GENERALIZATION OF SZEMERÉDI'S THEOREM 2006 Ilya D. Shkredov
+ Further bounds in the polynomial Szemer 2021 Borys Kuca
+ Asymptotic upper bounds on progression-free sets in $\mathbb{Z}_p^n$ 2016 Dion Gijswijt
+ On a Generalization of Szemeredi's Theorem 2005 Ilya D. Shkredov
+ PDF Progression-free sets in $\mathbb{Z}_4^n$ are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
PĂ©ter PĂĄl Pach
+ A New Proof of Szemerïżœdi's Theorem for Arithmetic Progressions of Length Four 1998 W. T. Gowers
+ Szemerédi's theorem and problems on arithmetic progressions 2006 Ilya D. Shkredov