José Miguel Hernández-Lobato

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Generative Model for Synthesizing Ionizable Lipids: A Monte Carlo Tree Search Approach 2024 Jingyi Zhao
Yuxuan Ou
Austin Tripp
Morteza Rasoulianboroujeni
José Miguel Hernández-Lobato
+ PDF Chat A Deep Generative Model for the Design of Synthesizable Ionizable Lipids 2024 Yuxuan Ou
Jingyi Zhao
Austin Tripp
Morteza Rasoulianboroujeni
José Miguel Hernández-Lobato
+ PDF Chat On conditional diffusion models for PDE simulations 2024 Aliaksandra Shysheya
Cristiana Diaconu
Federico Bergamin
Paris Perdikaris
José Miguel Hernández-Lobato
Richard E. Turner
Émile Mathieu
+ PDF Chat Training Neural Samplers with Reverse Diffusive KL Divergence 2024 Jiajun He
Wenlin Chen
Ming‐Tian Zhang
David G. Barber
José Miguel Hernández-Lobato
+ PDF Chat Batched Bayesian optimization with correlated candidate uncertainties 2024 Jenna C. Fromer
Runzhong Wang
Mrunali Manjrekar
Austin Tripp
José Miguel Hernández-Lobato
Connor W. Coley
+ PDF Chat Getting Free Bits Back from Rotational Symmetries in LLMs 2024 Jiajun He
Gergely Flamich
José Miguel Hernández-Lobato
+ PDF Chat Best Practices for Multi-Fidelity Bayesian Optimization in Materials and Molecular Research 2024 Víctor Sabanza-Gil
Riccardo Barbano
Daniel Pacheco Gutiérrez
Jeremy S. Luterbacher
José Miguel Hernández-Lobato
Philippe Schwaller
Loı̈c M. Roch
+ PDF Chat BNEM: A Boltzmann Sampler Based on Bootstrapped Noised Energy Matching 2024 RuiKang OuYang
Bo Qiang
José Miguel Hernández-Lobato
+ PDF Chat Efficient and Unbiased Sampling of Boltzmann Distributions via Consistency Models 2024 Z. W. Fan
Jiajun He
Laurence I. Midgley
Javier Antorán
José Miguel Hernández-Lobato
+ PDF Chat Uncertainty Modeling in Graph Neural Networks via Stochastic Differential Equations 2024 Richard Bergna
Sergio Calvo-Ordoñez
Felix L. Opolka
Píetro Lió
José Miguel Hernández-Lobato
+ PDF Chat Diagnosing and fixing common problems in Bayesian optimization for molecule design 2024 Austin Tripp
José Miguel Hernández-Lobato
+ PDF Chat Improving Antibody Design with Force-Guided Sampling in Diffusion Models 2024 Paulina Kulytė
Francisco Vargas
Simon V. Mathis
Yu Guang Wang
José Miguel Hernández-Lobato
Píetro Lió
+ PDF Chat Warm Start Marginal Likelihood Optimisation for Iterative Gaussian Processes 2024 Jihao Andreas Lin
Shreyas Padhy
Bruno Mlodozeniec
José Miguel Hernández-Lobato
+ PDF Chat Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes 2024 Jihao Andreas Lin
Shreyas Padhy
Bruno Mlodozeniec
Javier Antorán
José Miguel Hernández-Lobato
+ PDF Chat Accelerating Relative Entropy Coding with Space Partitioning 2024 Jiajun He
Gergely Flamich
José Miguel Hernández-Lobato
+ PDF Chat Generative Active Learning for the Search of Small-molecule Protein Binders 2024 Maksym Korablyov
Chenghao Liu
Moksh Jain
Almer M. van der Sloot
Eric Jolicoeur
Edward Ruediger
Andrei Cristian Nica
Emmanuel Bengio
Kostiantyn Lapchevskyi
Daniel J. St‐Cyr
+ PDF Chat A Generative Model of Symmetry Transformations 2024 James Urquhart Allingham
Bruno Mlodozeniec
Shreyas Padhy
Javier Antorán
David Krueger
Richard E. Turner
Eric Nalisnick
José Miguel Hernández-Lobato
+ PDF Chat Feature Attribution with Necessity and Sufficiency via Dual-stage Perturbation Test for Causal Explanation 2024 Xuexin Chen
Ruichu Cai
Zhengting Huang
Yuxuan Zhu
Julien Horwood
Zhifeng Hao
Zijian Li
José Miguel Hernández-Lobato
+ PDF Chat Diffusive Gibbs Sampling 2024 Wenlin Chen
Ming‐Tian Zhang
Brooks Paige
José Miguel Hernández-Lobato
David Barber
+ PDF Chat Introducing instance label correlation in multiple instance learning. Application to cancer detection on histopathological images 2023 Pablo Morales-Álvarez
Arne Schmidt
José Miguel Hernández-Lobato
Rafael Molina
+ PDF Chat normflows: A PyTorch Package for Normalizing Flows 2023 Vincent Stimper
David Liu
Andrew T. Campbell
Vincent Berenz
Lukas Ryll
Bernhard Schölkopf
José Miguel Hernández-Lobato
+ Image Reconstruction via Deep Image Prior Subspaces 2023 Riccardo Barbano
Javier Antorán
Johannes Leuschner
José Miguel Hernández-Lobato
Željko Kereta
Bangti Jin
+ normflows: A PyTorch Package for Normalizing Flows 2023 Vincent Stimper
David Liu
Andrew T. Campbell
Vincent Berenz
Lukas Ryll
Bernhard Schölkopf
José Miguel Hernández-Lobato
+ Compression with Bayesian Implicit Neural Representations 2023 Zongyu Guo
Gergely Flamich
Jiajun He
Zhibo Chen
José Miguel Hernández-Lobato
+ Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent 2023 Jihao Andreas Lin
Javier Antorán
Shreyas Padhy
David M. Janz
José Miguel Hernández-Lobato
Alexander Terenin
+ Tanimoto Random Features for Scalable Molecular Machine Learning 2023 Austin Tripp
Sergio Bacallado
Sukriti Singh
José Miguel Hernández-Lobato
+ Leveraging Task Structures for Improved Identifiability in Neural Network Representations 2023 Wenlin Chen
Julien Horwood
Juyeon Heo
José Miguel Hernández-Lobato
+ Online Laplace Model Selection Revisited 2023 Jihao Andreas Lin
Javier Antorán
José Miguel Hernández-Lobato
+ Minimal Random Code Learning with Mean-KL Parameterization 2023 Jihao Andreas Lin
Gergely Flamich
José Miguel Hernández-Lobato
+ SE(3) Equivariant Augmented Coupling Flows 2023 Laurence I. Midgley
Vincent Stimper
Javier Antorán
Émile Mathieu
Bernhard Schölkopf
José Miguel Hernández-Lobato
+ Graph Neural Stochastic Differential Equations 2023 Richard Bergna
Felix L. Opolka
Píetro Lió
José Miguel Hernández-Lobato
+ RECOMBINER: Robust and Enhanced Compression with Bayesian Implicit Neural Representations 2023 Jiajun He
Gergely Flamich
Zongyu Guo
José Miguel Hernández-Lobato
+ Retro-fallback: retrosynthetic planning in an uncertain world 2023 Austin Tripp
Krzysztof Maziarz
Sarah Lewis
Marwin Segler
José Miguel Hernández-Lobato
+ Genetic algorithms are strong baselines for molecule generation 2023 Austin Tripp
José Miguel Hernández-Lobato
+ Adam through a Second-Order Lens 2023 Ross M. Clarke
Baiyu Su
José Miguel Hernández-Lobato
+ Series of Hessian-Vector Products for Tractable Saddle-Free Newton Optimisation of Neural Networks 2023 Elre T. Oldewage
Ross M. Clarke
José Miguel Hernández-Lobato
+ Stochastic Gradient Descent for Gaussian Processes Done Right 2023 Jihao Andreas Lin
Shreyas Padhy
Javier Antorán
Austin Tripp
Alexander Terenin
Csaba Szepesvári
José Miguel Hernández-Lobato
David M. Janz
+ DOCKSTRING: Easy Molecular Docking Yields Better Benchmarks for Ligand Design 2022 Miguel García-Ortegón
Gregor N. C. Simm
Austin Tripp
José Miguel Hernández-Lobato
Andreas Bender
Sergio Bacallado
+ PDF Chat BSODA: A Bipartite Scalable Framework for Online Disease Diagnosis 2022 Weijie He
Xiaohao Mao
Chao Ma
Yu Huang
José Miguel Hernández-Lobato
Ting Chen
+ Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo 2022 Ignacio Peis
Chao Ma
José Miguel Hernández-Lobato
+ Fast Relative Entropy Coding with A* coding 2022 Gergely Flamich
Stratis Markou
José Miguel Hernández-Lobato
+ Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior 2022 Javier Antorán
Riccardo Barbano
Johannes Leuschner
José Miguel Hernández-Lobato
Bangti Jin
+ Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular Property Prediction 2022 Wenlin Chen
Austin Tripp
José Miguel Hernández-Lobato
+ Adapting the Linearised Laplace Model Evidence for Modern Deep Learning 2022 Javier Antorán
David M. Janz
James Urquhart Allingham
Erik Daxberger
Riccardo Barbano
Eric Nalisnick
José Miguel Hernández-Lobato
+ Bayesian Experimental Design for Computed Tomography with the Linearised Deep Image Prior 2022 Riccardo Barbano
Johannes Leuschner
Javier Antorán
Bangti Jin
José Miguel Hernández-Lobato
+ Flow Annealed Importance Sampling Bootstrap 2022 Laurence Illing Midgley
Vincent Stimper
Gregor N. C. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
+ Sampling-based inference for large linear models, with application to linearised Laplace 2022 Javier Antorán
Shreyas Padhy
Riccardo Barbano
Eric Nalisnick
David M. Janz
José Miguel Hernández-Lobato
+ PDF Chat Addressing Bias in Active Learning with Depth Uncertainty Networks... or Not 2021 Chelsea Murray
James Urquhart Allingham
Javier Antorán
José Miguel Hernández-Lobato
+ Bootstrap Your Flow 2021 Laurence Illing Midgley
Vincent Stimper
Gregor N. C. Simm
José Miguel Hernández-Lobato
+ Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation. 2021 Ross M. Clarke
Elre T. Oldewage
José Miguel Hernández-Lobato
+ A Gradient Based Strategy for Hamiltonian Monte Carlo Hyperparameter Optimization 2021 Andrew R. Campbell
Wenlong Chen
Vincent Stimper
José Miguel Hernández-Lobato
Yichuan Zhang
+ PDF Chat Educational Question Mining At Scale: Prediction, Analysis and Personalization 2021 Zichao Wang
Sebastian Tschiatschek
Simon Woodhead
José Miguel Hernández-Lobato
Simon Peyton Jones
Richard G. Baraniuk
Cheng Zhang
+ Gradient-based tuning of Hamiltonian Monte Carlo hyperparameters 2021 Andrew R. Campbell
Wenlong Chen
Vincent Stimper
José Miguel Hernández-Lobato
Yichuan Zhang
+ Symmetry-Aware Actor-Critic for 3D Molecular Design 2021 Gregor N. C. Simm
Robert Pinsler
Gábor Cśanyi
José Miguel Hernández-Lobato
+ Contextual HyperNetworks for Novel Feature Adaptation 2021 Angus Lamb
Evgeny Saveliev
Yingzhen Li
Sebastian Tschiatschek
Camilla Longden
Simon Woodhead
José Miguel Hernández-Lobato
Richard E. Turner
Pashmina Cameron
Cheng Zhang
+ Active Slices for Sliced Stein Discrepancy 2021 Wenbo Gong
Kaibo Zhang
Yingzhen Li
José Miguel Hernández-Lobato
+ Nonlinear Invariant Risk Minimization: A Causal Approach 2021 Chaochao Lu
Yuhuai Wu
José Miguel Hernández-Lobato
Bernhard Schölkopf
+ Results and Insights from Diagnostic Questions: The NeurIPS 2020 Education Challenge 2021 Zichao Wang
Angus Lamb
Evgeny Saveliev
Pashmina Cameron
Yordan Zaykov
José Miguel Hernández-Lobato
Richard E. Turner
Richard G. Baraniuk
Craig Barton
Simon Peyton Jones
+ Improving black-box optimization in VAE latent space using decoder uncertainty 2021 Pascal Notin
José Miguel Hernández-Lobato
Yarin Gal
+ Action-Sufficient State Representation Learning for Control with Structural Constraints 2021 Biwei Huang
Chaochao Lu
Liu Leqi
José Miguel Hernández-Lobato
Clark Glymour
Bernhard Schölkopf
Kun Zhang
+ Addressing Bias in Active Learning with Depth Uncertainty Networks... or Not 2021 Chelsea Murray
James Urquhart Allingham
Javier Antorán
José Miguel Hernández-Lobato
+ Depth Uncertainty Networks for Active Learning 2021 Chelsea Murray
James Urquhart Allingham
Javier Antorán
José Miguel Hernández-Lobato
+ Resampling Base Distributions of Normalizing Flows 2021 Vincent Stimper
Bernhard Schölkopf
José Miguel Hernández-Lobato
+ DOCKSTRING: easy molecular docking yields better benchmarks for ligand design 2021 Miguel García-Ortegón
Gregor N. C. Simm
Austin Tripp
José Miguel Hernández-Lobato
Andreas Bender
Sergio Bacallado
+ Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation 2021 Ross M. Clarke
Elre T. Oldewage
José Miguel Hernández-Lobato
+ Bootstrap Your Flow 2021 Laurence Illing Midgley
Vincent Stimper
Gregor N. C. Simm
José Miguel Hernández-Lobato
+ Barking up the right tree: an approach to search over molecule synthesis DAGs 2020 John Bradshaw
Brooks Paige
Matt J. Kusner
Marwin Segler
José Miguel Hernández-Lobato
+ Compressing Images by Encoding Their Latent Representations with Relative Entropy Coding 2020 Gergely Flamich
Marton Havasi
José Miguel Hernández-Lobato
+ FIT: a Fast and Accurate Framework for Solving Medical Inquiring and Diagnosing Tasks. 2020 Weijie He
Xiaohao Mao
Chao Ma
José Miguel Hernández-Lobato
Ting Chen
+ Symmetry-Aware Actor-Critic for 3D Molecular Design 2020 Gregor N. C. Simm
Robert Pinsler
Gábor Cśanyi
José Miguel Hernández-Lobato
+ Compressing Images by Encoding Their Latent Representations with Relative Entropy Coding 2020 Gergely Flamich
Marton Havasi
José Miguel Hernández-Lobato
+ Diagnostic Questions: The NeurIPS 2020 Education Challenge. 2020 Zichao Wang
Angus Lamb
Evgeny Saveliev
Pashmina Cameron
Yordan Zaykov
José Miguel Hernández-Lobato
Richard E. Turner
Richard G. Baraniuk
Craig Barton
Simon Peyton Jones
+ Predictive Complexity Priors 2020 Eric Nalisnick
Jonathan Gordon
José Miguel Hernández-Lobato
+ Depth Uncertainty in Neural Networks 2020 Javier Antorán
James Urquhart Allingham
José Miguel Hernández-Lobato
+ Reinforcement Learning for Molecular Design Guided by Quantum Mechanics 2020 Gregor N. C. Simm
Robert Pinsler
José Miguel Hernández-Lobato
+ Variational Depth Search in ResNets. 2020 Javier Antorán
James Urquhart Allingham
José Miguel Hernández-Lobato
+ DRIFT: Deep Reinforcement Learning for Functional Software Testing 2020 Luke Harries
Rebekah Storan Clarke
Timothy Chapman
Swamy V. P. L. N. Nallamalli
Levent Özgür
Shuktika Jain
Alex Po Leung
Steve Lim
Aaron Dietrich
José Miguel Hernández-Lobato
+ Excursion Search for Constrained Bayesian Optimization under a Limited Budget of Failures 2020 Alonso Marco
Alexander von Rohr
Dominik Baumann
José Miguel Hernández-Lobato
Sebastian Trimpe
+ Getting a CLUE: A Method for Explaining Uncertainty Estimates 2020 Javier Antorán
Umang Bhatt
Tameem Adel
Adrian Weller
José Miguel Hernández-Lobato
+ Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining 2020 Austin Tripp
Erik Daxberger
José Miguel Hernández-Lobato
+ Sliced Kernelized Stein Discrepancy 2020 Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
+ VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data 2020 Chao Ma
Sebastian Tschiatschek
José Miguel Hernández-Lobato
Richard E. Turner
Cheng Zhang
+ Sample-Efficient Reinforcement Learning via Counterfactual-Based Data Augmentation 2020 Chaochao Lu
Biwei Huang
Ke Wang
José Miguel Hernández-Lobato
Kun Zhang
Bernhard Schölkopf
+ Instructions and Guide for Diagnostic Questions: The NeurIPS 2020 Education Challenge 2020 Zichao Wang
Angus Lamb
Evgeny Saveliev
Pashmina Cameron
Yordan Zaykov
José Miguel Hernández-Lobato
Richard E. Turner
Richard G. Baraniuk
Craig Barton
Simon Peyton Jones
+ Educational Question Mining At Scale: Prediction, Analysis and Personalization 2020 Zichao Wang
Sebastian Tschiatschek
Simon Woodhead
José Miguel Hernández-Lobato
Simon Peyton Jones
Richard G. Baraniuk
Cheng Zhang
+ Barking up the right tree: an approach to search over molecule synthesis DAGs 2020 John L. Bradshaw
Brooks Paige
Matt J. Kusner
Marwin Segler
José Miguel Hernández-Lobato
+ Symmetry-Aware Actor-Critic for 3D Molecular Design 2020 Gregor N. C. Simm
Robert Pinsler
Gábor Csányi
José Miguel Hernández-Lobato
+ Bayesian Deep Learning via Subnetwork Inference 2020 Erik Daxberger
Eric Nalisnick
James Urquhart Allingham
Javier Antorán
José Miguel Hernández-Lobato
+ Compressing Images by Encoding Their Latent Representations with Relative Entropy Coding 2020 Gergely Flamich
Marton Havasi
José Miguel Hernández-Lobato
+ Predictive Complexity Priors 2020 Eric Nalisnick
Jonathan Gordon
José Miguel Hernández-Lobato
+ Depth Uncertainty in Neural Networks 2020 Javier Antorán
James Urquhart Allingham
José Miguel Hernández-Lobato
+ Reinforcement Learning for Molecular Design Guided by Quantum Mechanics 2020 Gregor N. C. Simm
Robert Pinsler
José Miguel Hernández-Lobato
+ Variational Depth Search in ResNets 2020 Javier Antorán
James Urquhart Allingham
José Miguel Hernández-Lobato
+ Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model 2019 Wenbo Gong
Sebastian Tschiatschek
Sebastian Nowozin
Richard E. Turner
José Miguel Hernández-Lobato
Cheng Zhang
+ Successor Uncertainties: exploration and uncertainty in temporal difference learning 2019 David M. Janz
Jiri Hron
P. Mazur
Katja Hofmann
José Miguel Hernández-Lobato
Sebastian Tschiatschek
+ A Generative Model for Molecular Distance Geometry 2019 Gregor N. C. Simm
José Miguel Hernández-Lobato
+ Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection 2019 Erik Daxberger
José Miguel Hernández-Lobato
+ Icebreaker: Element-wise Active Information Acquisition with Bayesian Deep Latent Gaussian Model. 2019 Wenbo Gong
Sebastian Tschiatschek
Richard E. Turner
Sebastian Nowozin
José Miguel Hernández-Lobato
Cheng Zhang
+ 'In-Between' Uncertainty in Bayesian Neural Networks 2019 Andrew Y. K. Foong
Yingzhen Li
José Miguel Hernández-Lobato
Richard E. Turner
+ A COLD Approach to Generating Optimal Samples. 2019 Omar Mahmood
José Miguel Hernández-Lobato
+ Interpretable Outcome Prediction with Sparse Bayesian Neural Networks in Intensive Care 2019 Anna-Lena Popkes
Hiske Overweg
Ari Ercole
Yingzhen Li
José Miguel Hernández-Lobato
Yordan Zaykov
Cheng Zhang
+ A Model to Search for Synthesizable Molecules 2019 John Bradshaw
Brooks Paige
Matt J. Kusner
Marwin Segler
José Miguel Hernández-Lobato
+ Minimal random code learning : Getting bits back from compressed model parameters 2019 Marton Havasi
Robert Peharz
José Miguel Hernández-Lobato
+ Bayesian Batch Active Learning as Sparse Subset Approximation 2019 Robert Pinsler
Jonathan Gordon
Eric Nalisnick
José Miguel Hernández-Lobato
+ Bayesian Batch Active Learning as Sparse Subset Approximation 2019 Robert Pinsler
Jonathan Gordon
Eric Nalisnick
José Miguel Hernández-Lobato
+ HM-VAEs: a Deep Generative Model for Real-valued Data with Heterogeneous Marginals 2019 Chao Ma
Sebastian Tschiatschek
Yingzhen Li
Richard E. Turner
José Miguel Hernández-Lobato
Cheng Zhang
+ Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection 2019 Erik Daxberger
José Miguel Hernández-Lobato
+ A Generative Model for Molecular Distance Geometry 2019 Gregor N. C. Simm
José Miguel Hernández-Lobato
+ Icebreaker: Element-wise Active Information Acquisition with Bayesian Deep Latent Gaussian Model 2019 Wenbo Gong
Sebastian Tschiatschek
Richard E. Turner
Sebastian Nowozin
José Miguel Hernández-Lobato
Cheng Zhang
+ 'In-Between' Uncertainty in Bayesian Neural Networks 2019 Andrew Y. K. Foong
Yingzhen Li
José Miguel Hernández-Lobato
Richard E. Turner
+ A COLD Approach to Generating Optimal Samples 2019 Omar Mahmood
José Miguel Hernández-Lobato
+ Interpretable Outcome Prediction with Sparse Bayesian Neural Networks in Intensive Care 2019 Hiske Overweg
Anna-Lena Popkes
Ari Ercole
Yingzhen Li
José Miguel Hernández-Lobato
Yordan Zaykov
Cheng Zhang
+ Fixing Variational Bayes: Deterministic Variational Inference for Bayesian Neural Networks 2018 Anqi Wu
Sebastian Nowozin
Edward Meeds
Richard E. Turner
José Miguel Hernández-Lobato
Alexander L. Gaunt
+ Ergodic Measure Preserving Flows 2018 Yichuan Zhang
José Miguel Hernández-Lobato
Zoubin Ghahramani
+ Meta-Learning For Stochastic Gradient MCMC. 2018 Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
+ Variational Measure Preserving Flows. 2018 Yichuan Zhang
José Miguel Hernández-Lobato
Zoubin Ghahramani
+ Predicting Electron Paths. 2018 John Bradshaw
Matt J. Kusner
Brooks Paige
Marwin Segler
José Miguel Hernández-Lobato
+ A Generative Model For Electron Paths 2018 John Bradshaw
Matt J. Kusner
Brooks Paige
Marwin Segler
José Miguel Hernández-Lobato
+ Training Deep Gaussian Processes using Stochastic Expectation Propagation and Probabilistic Backpropagation 2018 Thang D. Bui
José Miguel Hernández-Lobato
Yingzhen Li
Daniel Hernández-Lobato
Richard E. Turner
Richard E. Turner
+ Taking gradients through experiments: LSTMs and memory proximal policy optimization for black-box quantum control 2018 Moritz August
José Miguel Hernández-Lobato
+ Stochastic Expectation Propagation for Large Scale Gaussian Process Classification 2018 Daniel Hernández-Lobato
José Miguel Hernández-Lobato
Yingzhen Li
Thang D. Bui
Richard E. Turner
+ Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules 2018 Rafael Gómez‐Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
Jorge Aguilera‐Iparraguirre
Timothy Hirzel
Ryan P. Adams
Alán Aspuru‐Guzik
+ Deep Gaussian Processes with Decoupled Inducing Inputs 2018 Marton Havasi
José Miguel Hernández-Lobato
Juan José Murillo-Fuentes
+ Variational Implicit Processes 2018 Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
+ Meta-Learning for Stochastic Gradient MCMC 2018 Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
+ Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo 2018 Marton Havasi
José Miguel Hernández-Lobato
Juan José Murillo-Fuentes
+ Minimal Random Code Learning: Getting Bits Back from Compressed Model Parameters 2018 Marton Havasi
Robert Peharz
José Miguel Hernández-Lobato
+ Successor Uncertainties: Exploration and Uncertainty in Temporal Difference Learning 2018 David M. Janz
Jiri Hron
P. Mazur
Katja Hofmann
José Miguel Hernández-Lobato
Sebastian Tschiatschek
+ Deconfounding Reinforcement Learning in Observational Settings 2018 Chaochao Lu
Bernhard Schölkopf
José Miguel Hernández-Lobato
+ Dropout as a Structured Shrinkage Prior 2018 Eric Nalisnick
José Miguel Hernández-Lobato
Padhraic Smyth
+ Deterministic Variational Inference for Robust Bayesian Neural Networks 2018 Anqi Wu
Sebastian Nowozin
Edward Meeds
Richard E. Turner
José Miguel Hernández-Lobato
Alexander L. Gaunt
+ EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE 2018 Chao Ma
Sebastian Tschiatschek
Konstantina Palla
José Miguel Hernández-Lobato
Sebastian Nowozin
Cheng Zhang
+ PDF Chat Taking Gradients Through Experiments: LSTMs and Memory Proximal Policy Optimization for Black-Box Quantum Control 2018 Moritz August
José Miguel Hernández-Lobato
+ Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo 2018 Marton Havasi
José Miguel Hernández-Lobato
Juan José Murillo-Fuentes
+ Ergodic Inference: Accelerate Convergence by Optimisation 2018 Yichuan Zhang
José Miguel Hernández-Lobato
+ A Generative Model For Electron Paths 2018 John L. Bradshaw
Matt J. Kusner
Brooks Paige
Marwin Segler
José Miguel Hernández-Lobato
+ Taking gradients through experiments: LSTMs and memory proximal policy optimization for black-box quantum control 2018 Moritz August
José Miguel Hernández-Lobato
+ Deep Gaussian Processes with Decoupled Inducing Inputs 2018 Marton Havasi
José Miguel Hernández-Lobato
Juan José Murillo-Fuentes
+ Decomposition of Uncertainty for Active Learning and Reliable Reinforcement Learning in Stochastic Systems. 2017 Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi‐Velez
Steffen Udluft
+ Grammar Variational Autoencoder 2017 Matt J. Kusner
Brooks Paige
José Miguel Hernández-Lobato
+ Bayesian Semisupervised Learning with Deep Generative Models 2017 Jonathan Gordon
José Miguel Hernández-Lobato
+ Uncertainty Decomposition in Bayesian Neural Networks with Latent Variables 2017 Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi‐Velez
Steffen Udluft
+ Actively Learning what makes a Discrete Sequence Valid 2017 David M. Janz
Jos van der Westhuizen
José Miguel Hernández-Lobato
+ Constrained Bayesian Optimization for Automatic Chemical Design 2017 Ryan‐Rhys Griffiths
José Miguel Hernández-Lobato
+ Learning a Generative Model for Validity in Complex Discrete Structures 2017 David M. Janz
Jos van der Westhuizen
Brooks Paige
Matt J. Kusner
José Miguel Hernández-Lobato
+ Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning 2017 Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi‐Velez
Steffen Udluft
+ Grammar Variational Autoencoder 2017 Matt J. Kusner
Brooks Paige
José Miguel Hernández-Lobato
+ Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space 2017 José Miguel Hernández-Lobato
James Requeima
Edward O. Pyzer‐Knapp
Alán Aspuru‐Guzik
+ GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution 2016 Matt J. Kusner
José Miguel Hernández-Lobato
+ GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution 2016 Matt J. Kusner
José Miguel Hernández-Lobato
+ Learning and Policy Search in Stochastic Dynamical Systems with Bayesian Neural Networks 2016 Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi‐Velez
Steffen Udluft
+ Learning and policy search in stochastic dynamical systems with Bayesian neural networks 2016 Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi‐Velez
Steffen Udluft
+ Sequence Tutor: Conservative Fine-Tuning of Sequence Generation Models with KL-control 2016 Natasha Jaques
Shixiang Gu
Dzmitry Bahdanau
José Miguel Hernández-Lobato
Richard E. Turner
Douglas Eck
+ Deep Gaussian Processes for Regression using Approximate Expectation Propagation 2016 Thang D. Bui
Daniel Hernández-Lobato
Yingzhen Li
José Miguel Hernández-Lobato
Richard E. Turner
+ GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution 2016 Matt J. Kusner
José Miguel Hernández-Lobato
+ Learning and Policy Search in Stochastic Dynamical Systems with Bayesian Neural Networks 2016 Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi‐Velez
Steffen Udluft
+ Predictive Entropy Search for Multi-objective Bayesian Optimization 2015 Daniel Hernández-Lobato
José Miguel Hernández-Lobato
Amar Shah
Ryan P. Adams
+ Black-box $\alpha$-divergence Minimization 2015 José Miguel Hernández-Lobato
Yingzhen Li
Mark Rowland
Daniel Hernández-Lobato
Thang D. Bui
Richard E. Turner
+ Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks 2015 José Miguel Hernández-Lobato
Ryan P. Adams
+ Predictive Entropy Search for Bayesian Optimization with Unknown Constraints 2015 José Miguel Hernández-Lobato
Michael A. Gelbart
Matthew W. Hoffman
Ryan P. Adams
Zoubin Ghahramani
+ Predictive Entropy Search for Bayesian Optimization with Unknown Constraints 2015 José Miguel Hernández-Lobato
Michael A. Gelbart
Matthew D. Hoffman
Ryan P. Adams
Zoubin Ghahramani
+ Stochastic Expectation Propagation 2015 Yingzhen Li
José Miguel Hernández-Lobato
Richard E. Turner
+ A General Framework for Constrained Bayesian Optimization using Information-based Search 2015 José Miguel Hernández-Lobato
Michael A. Gelbart
Ryan P. Adams
Matthew W. Hoffman
Zoubin Ghahramani
+ Stochastic Expectation Propagation for Large Scale Gaussian Process Classification 2015 Daniel Hernández-Lobato
José Miguel Hernández-Lobato
Yingzhen Li
Thang Bui
Richard E. Turner
+ Black-box $α$-divergence Minimization 2015 José Miguel Hernández-Lobato
Yingzhen Li
Mark Rowland
Daniel Hernández-Lobato
Thang Bui
Richard E. Turner
+ Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks 2015 José Miguel Hernández-Lobato
Ryan P. Adams
+ Predictive Entropy Search for Multi-objective Bayesian Optimization 2015 Daniel Hernández-Lobato
José Miguel Hernández-Lobato
Anoop Shah
Ryan P. Adams
+ Training Deep Gaussian Processes using Stochastic Expectation Propagation and Probabilistic Backpropagation 2015 Thang D. Bui
José Miguel Hernández-Lobato
Yingzhen Li
Daniel Hernández-Lobato
Richard E. Turner
+ Scalable Gaussian Process Classification via Expectation Propagation 2015 Daniel Hernández-Lobato
José Miguel Hernández-Lobato
+ Predictive Entropy Search for Efficient Global Optimization of Black-box Functions 2014 José Miguel Hernández-Lobato
Matthew W. Hoffman
Zoubin Ghahramani
+ Gaussian Process Volatility Model 2014 Yue Wu
José Miguel Hernández-Lobato
Zoubin Ghahramani
+ Predictive Entropy Search for Efficient Global Optimization of Black-box Functions 2014 José Miguel Hernández-Lobato
Matthew W. Hoffman
Zoubin Ghahramani
+ Dynamic Covariance Models for Multivariate Financial Time Series 2013 Yue Wu
José Miguel Hernández-Lobato
Zoubin Ghahramani
+ Gaussian Process Vine Copulas for Multivariate Dependence 2013 David Lopez‐Paz
José Miguel Hernández-Lobato
Zoubin Ghahramani
+ Semi-Supervised Domain Adaptation with Non-Parametric Copulas 2013 David López-Paz
José Miguel Hernández-Lobato
Bernhard Schölkopf
+ Gaussian Process Conditional Copulas with Applications to Financial Time Series 2013 José Miguel Hernández-Lobato
James Robert Lloyd
Daniel Hernández-Lobato
+ Convergent Expectation Propagation in Linear Models with Spike-and-slab Priors 2011 José Miguel Hernández-Lobato
Daniel Hernández-Lobato
+ Balancing flexibility and robustness in machine learning: semi-parametric methods and sparse linear models 2010 José Miguel Hernández-Lobato
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning 2015 Yarin Gal
Zoubin Ghahramani
15
+ Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules 2018 Rafael Gómez‐Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
Jorge Aguilera‐Iparraguirre
Timothy Hirzel
Ryan P. Adams
Alán Aspuru‐Guzik
14
+ Stochastic Backpropagation and Approximate Inference in Deep Generative Models 2014 Danilo Jimenez Rezende
Shakir Mohamed
Daan Wierstra
13
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
13
+ Weight Uncertainty in Neural Networks 2015 Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
9
+ Generating Sentences from a Continuous Space 2016 Samuel R. Bowman
Luke Vilnis
Oriol Vinyals
Andrew M. Dai
Rafał Józefowicz
Samy Bengio
8
+ Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation 2018 Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
Jure Leskovec
8
+ Expectation Propagation for approximate Bayesian inference 2013 Thomas P. Minka
8
+ Practical Bayesian Optimization of Machine Learning Algorithms 2012 Jasper Snoek
Hugo Larochelle
Ryan P. Adams
8
+ PDF Chat GuacaMol: Benchmarking Models for de Novo Molecular Design 2019 Nathan Brown
Marco Fiscato
Marwin Segler
Alain C. Vaucher
8
+ Learning Deep Generative Models of Graphs 2018 Yujia Li
Oriol Vinyals
Chris Dyer
Razvan Pascanu
Peter Battaglia
8
+ Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models 2017 Gabriel Lima Guimaraes
Benjamín Sánchez-Lengeling
Pedro Luis Cunha Farias
Alán Aspuru‐Guzik
8
+ Pattern Recognition and Machine Learning 2007 Christopher Bishop
7
+ MolGAN: An implicit generative model for small molecular graphs 2018 Nicola De Cao
Thomas Kipf
7
+ PDF Chat Molecular de-novo design through deep reinforcement learning 2017 Marcus Olivecrona
Thomas Blaschke
Ola Engkvist
Hongming Chen
7
+ A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning 2010 Eric Brochu
Vlad M. Cora
Nando de Freitas
6
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
6
+ PDF Chat Multi-objective de novo drug design with conditional graph generative model 2018 Yibo Li
Liangren Zhang
Zhenming Liu
6
+ Deep Gaussian Processes for Regression using Approximate Expectation Propagation 2016 Thang D. Bui
Daniel Hernández-Lobato
Yingzhen Li
José Miguel Hernández-Lobato
Richard E. Turner
6
+ Practical Bayesian Optimization of Machine Learning Algorithms 2012 Jasper Snoek
Hugo Larochelle
Ryan P. Adams
6
+ PDF Chat Optimization of Molecules via Deep Reinforcement Learning 2019 Zhenpeng Zhou
Steven Kearnes
Li Li
Richard N. Zare
Patrick Riley
6
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
5
+ Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles 2016 Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
5
+ PDF Chat PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation 2017 Raffaelli Charles
Hao Su
Kaichun Mo
Leonidas Guibas
5
+ A kernel two-sample test 2012 Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alexander J. Smola
5
+ Predictive Entropy Search for Efficient Global Optimization of Black-box Functions 2014 José Miguel Hernández-Lobato
Matthew W. Hoffman
Zoubin Ghahramani
5
+ Learning and Policy Search in Stochastic Dynamical Systems with Bayesian Neural Networks 2016 Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi‐Velez
Steffen Udluft
5
+ Constrained Graph Variational Autoencoders for Molecule Design 2018 Qi Liu
Miltiadis Allamanis
Marc Brockschmidt
Alexander L. Gaunt
5
+ Bayesian Active Learning for Classification and Preference Learning 2011 Neil Houlsby
Ferenc Huszár
Zoubin Ghahramani
Máté Lengyel
5
+ Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation 2014 Kyunghyun Cho
Bart van Merriënboer
Çaǧlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
5
+ Bayesian Learning via Stochastic Gradient Langevin Dynamics 2011 Max Welling
Yee Whye Teh
5
+ Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks 2015 José Miguel Hernández-Lobato
Ryan P. Adams
5
+ Spatial Point Processes 2011 Mark Huber
5
+ PDF Chat “Found in Translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models 2018 Philippe Schwaller
Théophile Gaudin
Dávid Lányi
Costas Bekas
Teodoro Laino
4
+ PDF Chat Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning 2019 Frank Noé
Simon Olsson
Jonas Köhler
Hao Wu
4
+ Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms 2017 Xiao Han
Kashif Rasul
Roland Vollgraf
4
+ Statistical Analysis With Missing Data 1989 Maureen Lahiff
Roderick J. A. Little
Donald B. Rubin
4
+ Importance Weighted Autoencoders 2015 Yuri Burda
Roger Grosse
Ruslan Salakhutdinov
4
+ Convolutional Networks on Graphs for Learning Molecular Fingerprints 2015 David Duvenaud
Dougal Maclaurin
Jorge Aguilera‐Iparraguirre
Rafael Gómez‐Bombarelli
Timothy Hirzel
Alán Aspuru‐Guzik
Ryan P. Adams
4
+ Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model 2019 Wenbo Gong
Sebastian Tschiatschek
Sebastian Nowozin
Richard E. Turner
José Miguel Hernández-Lobato
Cheng Zhang
4
+ Stochastic Backpropagation and Approximate Inference in Deep Generative Models 2014 Danilo Jimenez Rezende
Shakir Mohamed
Daan Wierstra
4
+ PDF Chat An informational approach to the global optimization of expensive-to-evaluate functions 2008 Julien Villemonteix
Emmanuel Vázquez
Éric Walter
4
+ PDF Chat Advances in Variational Inference 2018 Cheng Zhang
Judith Bütepage
Hedvig Kjellström
Stephan Mandt
4
+ Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks 2015 Alec Radford
Luke Metz
Soumith Chintala
4
+ Gated Graph Sequence Neural Networks 2015 Yujia Li
Daniel Tarlow
Marc Brockschmidt
Richard S. Zemel
4
+ Markov Chain Monte Carlo and Variational Inference: Bridging the Gap 2014 Tim Salimans
Diederik P. Kingma
Max Welling
4
+ Generating Focussed Molecule Libraries for Drug Discovery with Recurrent Neural Networks 2017 Marwin Segler
Thierry Kogej
Christian Tyrchan
Mark P. Waller
4
+ Stochastic Gradient Hamiltonian Monte Carlo 2014 Tianqi Chen
Emily B. Fox
Carlos Guestrin
4
+ Learning Multimodal Graph-to-Graph Translation for Molecular Optimization 2018 Wengong Jin
Kevin Yang
Regina Barzilay
Tommi Jaakkola
4
+ Learning Multimodal Transition Dynamics for Model-Based Reinforcement Learning 2017 Thomas M. Moerland
Joost Broekens
Catholijn M. Jonker
4