+
PDF
Chat
|
Generative Model for Synthesizing Ionizable Lipids: A Monte Carlo Tree
Search Approach
|
2024
|
Jingyi Zhao
Yuxuan Ou
Austin Tripp
Morteza Rasoulianboroujeni
José Miguel Hernández-Lobato
|
+
PDF
Chat
|
A Deep Generative Model for the Design of Synthesizable Ionizable Lipids
|
2024
|
Yuxuan Ou
Jingyi Zhao
Austin Tripp
Morteza Rasoulianboroujeni
José Miguel Hernández-Lobato
|
+
PDF
Chat
|
On conditional diffusion models for PDE simulations
|
2024
|
Aliaksandra Shysheya
Cristiana Diaconu
Federico Bergamin
Paris Perdikaris
José Miguel Hernández-Lobato
Richard E. Turner
Émile Mathieu
|
+
PDF
Chat
|
Training Neural Samplers with Reverse Diffusive KL Divergence
|
2024
|
Jiajun He
Wenlin Chen
Ming‐Tian Zhang
David G. Barber
José Miguel Hernández-Lobato
|
+
PDF
Chat
|
Batched Bayesian optimization with correlated candidate uncertainties
|
2024
|
Jenna C. Fromer
Runzhong Wang
Mrunali Manjrekar
Austin Tripp
José Miguel Hernández-Lobato
Connor W. Coley
|
+
PDF
Chat
|
Getting Free Bits Back from Rotational Symmetries in LLMs
|
2024
|
Jiajun He
Gergely Flamich
José Miguel Hernández-Lobato
|
+
PDF
Chat
|
Best Practices for Multi-Fidelity Bayesian Optimization in Materials and
Molecular Research
|
2024
|
Víctor Sabanza-Gil
Riccardo Barbano
Daniel Pacheco Gutiérrez
Jeremy S. Luterbacher
José Miguel Hernández-Lobato
Philippe Schwaller
Loı̈c M. Roch
|
+
PDF
Chat
|
BNEM: A Boltzmann Sampler Based on Bootstrapped Noised Energy Matching
|
2024
|
RuiKang OuYang
Bo Qiang
José Miguel Hernández-Lobato
|
+
PDF
Chat
|
Efficient and Unbiased Sampling of Boltzmann Distributions via
Consistency Models
|
2024
|
Z. W. Fan
Jiajun He
Laurence I. Midgley
Javier Antorán
José Miguel Hernández-Lobato
|
+
PDF
Chat
|
Uncertainty Modeling in Graph Neural Networks via Stochastic
Differential Equations
|
2024
|
Richard Bergna
Sergio Calvo-Ordoñez
Felix L. Opolka
Píetro Lió
José Miguel Hernández-Lobato
|
+
PDF
Chat
|
Diagnosing and fixing common problems in Bayesian optimization for
molecule design
|
2024
|
Austin Tripp
José Miguel Hernández-Lobato
|
+
PDF
Chat
|
Improving Antibody Design with Force-Guided Sampling in Diffusion Models
|
2024
|
Paulina Kulytė
Francisco Vargas
Simon V. Mathis
Yu Guang Wang
José Miguel Hernández-Lobato
Píetro Lió
|
+
PDF
Chat
|
Warm Start Marginal Likelihood Optimisation for Iterative Gaussian
Processes
|
2024
|
Jihao Andreas Lin
Shreyas Padhy
Bruno Mlodozeniec
José Miguel Hernández-Lobato
|
+
PDF
Chat
|
Improving Linear System Solvers for Hyperparameter Optimisation in
Iterative Gaussian Processes
|
2024
|
Jihao Andreas Lin
Shreyas Padhy
Bruno Mlodozeniec
Javier Antorán
José Miguel Hernández-Lobato
|
+
PDF
Chat
|
Accelerating Relative Entropy Coding with Space Partitioning
|
2024
|
Jiajun He
Gergely Flamich
José Miguel Hernández-Lobato
|
+
PDF
Chat
|
Generative Active Learning for the Search of Small-molecule Protein
Binders
|
2024
|
Maksym Korablyov
Chenghao Liu
Moksh Jain
Almer M. van der Sloot
Eric Jolicoeur
Edward Ruediger
Andrei Cristian Nica
Emmanuel Bengio
Kostiantyn Lapchevskyi
Daniel J. St‐Cyr
|
+
PDF
Chat
|
A Generative Model of Symmetry Transformations
|
2024
|
James Urquhart Allingham
Bruno Mlodozeniec
Shreyas Padhy
Javier Antorán
David Krueger
Richard E. Turner
Eric Nalisnick
José Miguel Hernández-Lobato
|
+
PDF
Chat
|
Feature Attribution with Necessity and Sufficiency via Dual-stage
Perturbation Test for Causal Explanation
|
2024
|
Xuexin Chen
Ruichu Cai
Zhengting Huang
Yuxuan Zhu
Julien Horwood
Zhifeng Hao
Zijian Li
José Miguel Hernández-Lobato
|
+
PDF
Chat
|
Diffusive Gibbs Sampling
|
2024
|
Wenlin Chen
Ming‐Tian Zhang
Brooks Paige
José Miguel Hernández-Lobato
David Barber
|
+
PDF
Chat
|
Introducing instance label correlation in multiple instance learning. Application to cancer detection on histopathological images
|
2023
|
Pablo Morales-Álvarez
Arne Schmidt
José Miguel Hernández-Lobato
Rafael Molina
|
+
PDF
Chat
|
normflows: A PyTorch Package for Normalizing Flows
|
2023
|
Vincent Stimper
David Liu
Andrew T. Campbell
Vincent Berenz
Lukas Ryll
Bernhard Schölkopf
José Miguel Hernández-Lobato
|
+
|
Image Reconstruction via Deep Image Prior Subspaces
|
2023
|
Riccardo Barbano
Javier Antorán
Johannes Leuschner
José Miguel Hernández-Lobato
Željko Kereta
Bangti Jin
|
+
|
normflows: A PyTorch Package for Normalizing Flows
|
2023
|
Vincent Stimper
David Liu
Andrew T. Campbell
Vincent Berenz
Lukas Ryll
Bernhard Schölkopf
José Miguel Hernández-Lobato
|
+
|
Compression with Bayesian Implicit Neural Representations
|
2023
|
Zongyu Guo
Gergely Flamich
Jiajun He
Zhibo Chen
José Miguel Hernández-Lobato
|
+
|
Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent
|
2023
|
Jihao Andreas Lin
Javier Antorán
Shreyas Padhy
David M. Janz
José Miguel Hernández-Lobato
Alexander Terenin
|
+
|
Tanimoto Random Features for Scalable Molecular Machine Learning
|
2023
|
Austin Tripp
Sergio Bacallado
Sukriti Singh
José Miguel Hernández-Lobato
|
+
|
Leveraging Task Structures for Improved Identifiability in Neural Network Representations
|
2023
|
Wenlin Chen
Julien Horwood
Juyeon Heo
José Miguel Hernández-Lobato
|
+
|
Online Laplace Model Selection Revisited
|
2023
|
Jihao Andreas Lin
Javier Antorán
José Miguel Hernández-Lobato
|
+
|
Minimal Random Code Learning with Mean-KL Parameterization
|
2023
|
Jihao Andreas Lin
Gergely Flamich
José Miguel Hernández-Lobato
|
+
|
SE(3) Equivariant Augmented Coupling Flows
|
2023
|
Laurence I. Midgley
Vincent Stimper
Javier Antorán
Émile Mathieu
Bernhard Schölkopf
José Miguel Hernández-Lobato
|
+
|
Graph Neural Stochastic Differential Equations
|
2023
|
Richard Bergna
Felix L. Opolka
Píetro Lió
José Miguel Hernández-Lobato
|
+
|
RECOMBINER: Robust and Enhanced Compression with Bayesian Implicit Neural Representations
|
2023
|
Jiajun He
Gergely Flamich
Zongyu Guo
José Miguel Hernández-Lobato
|
+
|
Retro-fallback: retrosynthetic planning in an uncertain world
|
2023
|
Austin Tripp
Krzysztof Maziarz
Sarah Lewis
Marwin Segler
José Miguel Hernández-Lobato
|
+
|
Genetic algorithms are strong baselines for molecule generation
|
2023
|
Austin Tripp
José Miguel Hernández-Lobato
|
+
|
Adam through a Second-Order Lens
|
2023
|
Ross M. Clarke
Baiyu Su
José Miguel Hernández-Lobato
|
+
|
Series of Hessian-Vector Products for Tractable Saddle-Free Newton Optimisation of Neural Networks
|
2023
|
Elre T. Oldewage
Ross M. Clarke
José Miguel Hernández-Lobato
|
+
|
Stochastic Gradient Descent for Gaussian Processes Done Right
|
2023
|
Jihao Andreas Lin
Shreyas Padhy
Javier Antorán
Austin Tripp
Alexander Terenin
Csaba Szepesvári
José Miguel Hernández-Lobato
David M. Janz
|
+
|
DOCKSTRING: Easy Molecular Docking Yields Better Benchmarks for Ligand Design
|
2022
|
Miguel García-Ortegón
Gregor N. C. Simm
Austin Tripp
José Miguel Hernández-Lobato
Andreas Bender
Sergio Bacallado
|
+
PDF
Chat
|
BSODA: A Bipartite Scalable Framework for Online Disease Diagnosis
|
2022
|
Weijie He
Xiaohao Mao
Chao Ma
Yu Huang
José Miguel Hernández-Lobato
Ting Chen
|
+
|
Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo
|
2022
|
Ignacio Peis
Chao Ma
José Miguel Hernández-Lobato
|
+
|
Fast Relative Entropy Coding with A* coding
|
2022
|
Gergely Flamich
Stratis Markou
José Miguel Hernández-Lobato
|
+
|
Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior
|
2022
|
Javier Antorán
Riccardo Barbano
Johannes Leuschner
José Miguel Hernández-Lobato
Bangti Jin
|
+
|
Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular Property Prediction
|
2022
|
Wenlin Chen
Austin Tripp
José Miguel Hernández-Lobato
|
+
|
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
|
2022
|
Javier Antorán
David M. Janz
James Urquhart Allingham
Erik Daxberger
Riccardo Barbano
Eric Nalisnick
José Miguel Hernández-Lobato
|
+
|
Bayesian Experimental Design for Computed Tomography with the Linearised Deep Image Prior
|
2022
|
Riccardo Barbano
Johannes Leuschner
Javier Antorán
Bangti Jin
José Miguel Hernández-Lobato
|
+
|
Flow Annealed Importance Sampling Bootstrap
|
2022
|
Laurence Illing Midgley
Vincent Stimper
Gregor N. C. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
|
+
|
Sampling-based inference for large linear models, with application to linearised Laplace
|
2022
|
Javier Antorán
Shreyas Padhy
Riccardo Barbano
Eric Nalisnick
David M. Janz
José Miguel Hernández-Lobato
|
+
PDF
Chat
|
Addressing Bias in Active Learning with Depth Uncertainty Networks... or
Not
|
2021
|
Chelsea Murray
James Urquhart Allingham
Javier Antorán
José Miguel Hernández-Lobato
|
+
|
Bootstrap Your Flow
|
2021
|
Laurence Illing Midgley
Vincent Stimper
Gregor N. C. Simm
José Miguel Hernández-Lobato
|
+
|
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation.
|
2021
|
Ross M. Clarke
Elre T. Oldewage
José Miguel Hernández-Lobato
|
+
|
A Gradient Based Strategy for Hamiltonian Monte Carlo Hyperparameter Optimization
|
2021
|
Andrew R. Campbell
Wenlong Chen
Vincent Stimper
José Miguel Hernández-Lobato
Yichuan Zhang
|
+
PDF
Chat
|
Educational Question Mining At Scale: Prediction, Analysis and Personalization
|
2021
|
Zichao Wang
Sebastian Tschiatschek
Simon Woodhead
José Miguel Hernández-Lobato
Simon Peyton Jones
Richard G. Baraniuk
Cheng Zhang
|
+
|
Gradient-based tuning of Hamiltonian Monte Carlo hyperparameters
|
2021
|
Andrew R. Campbell
Wenlong Chen
Vincent Stimper
José Miguel Hernández-Lobato
Yichuan Zhang
|
+
|
Symmetry-Aware Actor-Critic for 3D Molecular Design
|
2021
|
Gregor N. C. Simm
Robert Pinsler
Gábor Cśanyi
José Miguel Hernández-Lobato
|
+
|
Contextual HyperNetworks for Novel Feature Adaptation
|
2021
|
Angus Lamb
Evgeny Saveliev
Yingzhen Li
Sebastian Tschiatschek
Camilla Longden
Simon Woodhead
José Miguel Hernández-Lobato
Richard E. Turner
Pashmina Cameron
Cheng Zhang
|
+
|
Active Slices for Sliced Stein Discrepancy
|
2021
|
Wenbo Gong
Kaibo Zhang
Yingzhen Li
José Miguel Hernández-Lobato
|
+
|
Nonlinear Invariant Risk Minimization: A Causal Approach
|
2021
|
Chaochao Lu
Yuhuai Wu
José Miguel Hernández-Lobato
Bernhard Schölkopf
|
+
|
Results and Insights from Diagnostic Questions: The NeurIPS 2020 Education Challenge
|
2021
|
Zichao Wang
Angus Lamb
Evgeny Saveliev
Pashmina Cameron
Yordan Zaykov
José Miguel Hernández-Lobato
Richard E. Turner
Richard G. Baraniuk
Craig Barton
Simon Peyton Jones
|
+
|
Improving black-box optimization in VAE latent space using decoder uncertainty
|
2021
|
Pascal Notin
José Miguel Hernández-Lobato
Yarin Gal
|
+
|
Action-Sufficient State Representation Learning for Control with Structural Constraints
|
2021
|
Biwei Huang
Chaochao Lu
Liu Leqi
José Miguel Hernández-Lobato
Clark Glymour
Bernhard Schölkopf
Kun Zhang
|
+
|
Addressing Bias in Active Learning with Depth Uncertainty Networks... or Not
|
2021
|
Chelsea Murray
James Urquhart Allingham
Javier Antorán
José Miguel Hernández-Lobato
|
+
|
Depth Uncertainty Networks for Active Learning
|
2021
|
Chelsea Murray
James Urquhart Allingham
Javier Antorán
José Miguel Hernández-Lobato
|
+
|
Resampling Base Distributions of Normalizing Flows
|
2021
|
Vincent Stimper
Bernhard Schölkopf
José Miguel Hernández-Lobato
|
+
|
DOCKSTRING: easy molecular docking yields better benchmarks for ligand design
|
2021
|
Miguel García-Ortegón
Gregor N. C. Simm
Austin Tripp
José Miguel Hernández-Lobato
Andreas Bender
Sergio Bacallado
|
+
|
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
|
2021
|
Ross M. Clarke
Elre T. Oldewage
José Miguel Hernández-Lobato
|
+
|
Bootstrap Your Flow
|
2021
|
Laurence Illing Midgley
Vincent Stimper
Gregor N. C. Simm
José Miguel Hernández-Lobato
|
+
|
Barking up the right tree: an approach to search over molecule synthesis DAGs
|
2020
|
John Bradshaw
Brooks Paige
Matt J. Kusner
Marwin Segler
José Miguel Hernández-Lobato
|
+
|
Compressing Images by Encoding Their Latent Representations with Relative Entropy Coding
|
2020
|
Gergely Flamich
Marton Havasi
José Miguel Hernández-Lobato
|
+
|
FIT: a Fast and Accurate Framework for Solving Medical Inquiring and Diagnosing Tasks.
|
2020
|
Weijie He
Xiaohao Mao
Chao Ma
José Miguel Hernández-Lobato
Ting Chen
|
+
|
Symmetry-Aware Actor-Critic for 3D Molecular Design
|
2020
|
Gregor N. C. Simm
Robert Pinsler
Gábor Cśanyi
José Miguel Hernández-Lobato
|
+
|
Compressing Images by Encoding Their Latent Representations with Relative Entropy Coding
|
2020
|
Gergely Flamich
Marton Havasi
José Miguel Hernández-Lobato
|
+
|
Diagnostic Questions: The NeurIPS 2020 Education Challenge.
|
2020
|
Zichao Wang
Angus Lamb
Evgeny Saveliev
Pashmina Cameron
Yordan Zaykov
José Miguel Hernández-Lobato
Richard E. Turner
Richard G. Baraniuk
Craig Barton
Simon Peyton Jones
|
+
|
Predictive Complexity Priors
|
2020
|
Eric Nalisnick
Jonathan Gordon
José Miguel Hernández-Lobato
|
+
|
Depth Uncertainty in Neural Networks
|
2020
|
Javier Antorán
James Urquhart Allingham
José Miguel Hernández-Lobato
|
+
|
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
|
2020
|
Gregor N. C. Simm
Robert Pinsler
José Miguel Hernández-Lobato
|
+
|
Variational Depth Search in ResNets.
|
2020
|
Javier Antorán
James Urquhart Allingham
José Miguel Hernández-Lobato
|
+
|
DRIFT: Deep Reinforcement Learning for Functional Software Testing
|
2020
|
Luke Harries
Rebekah Storan Clarke
Timothy Chapman
Swamy V. P. L. N. Nallamalli
Levent Özgür
Shuktika Jain
Alex Po Leung
Steve Lim
Aaron Dietrich
José Miguel Hernández-Lobato
|
+
|
Excursion Search for Constrained Bayesian Optimization under a Limited Budget of Failures
|
2020
|
Alonso Marco
Alexander von Rohr
Dominik Baumann
José Miguel Hernández-Lobato
Sebastian Trimpe
|
+
|
Getting a CLUE: A Method for Explaining Uncertainty Estimates
|
2020
|
Javier Antorán
Umang Bhatt
Tameem Adel
Adrian Weller
José Miguel Hernández-Lobato
|
+
|
Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining
|
2020
|
Austin Tripp
Erik Daxberger
José Miguel Hernández-Lobato
|
+
|
Sliced Kernelized Stein Discrepancy
|
2020
|
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
|
+
|
VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data
|
2020
|
Chao Ma
Sebastian Tschiatschek
José Miguel Hernández-Lobato
Richard E. Turner
Cheng Zhang
|
+
|
Sample-Efficient Reinforcement Learning via Counterfactual-Based Data Augmentation
|
2020
|
Chaochao Lu
Biwei Huang
Ke Wang
José Miguel Hernández-Lobato
Kun Zhang
Bernhard Schölkopf
|
+
|
Instructions and Guide for Diagnostic Questions: The NeurIPS 2020 Education Challenge
|
2020
|
Zichao Wang
Angus Lamb
Evgeny Saveliev
Pashmina Cameron
Yordan Zaykov
José Miguel Hernández-Lobato
Richard E. Turner
Richard G. Baraniuk
Craig Barton
Simon Peyton Jones
|
+
|
Educational Question Mining At Scale: Prediction, Analysis and Personalization
|
2020
|
Zichao Wang
Sebastian Tschiatschek
Simon Woodhead
José Miguel Hernández-Lobato
Simon Peyton Jones
Richard G. Baraniuk
Cheng Zhang
|
+
|
Barking up the right tree: an approach to search over molecule synthesis DAGs
|
2020
|
John L. Bradshaw
Brooks Paige
Matt J. Kusner
Marwin Segler
José Miguel Hernández-Lobato
|
+
|
Symmetry-Aware Actor-Critic for 3D Molecular Design
|
2020
|
Gregor N. C. Simm
Robert Pinsler
Gábor Csányi
José Miguel Hernández-Lobato
|
+
|
Bayesian Deep Learning via Subnetwork Inference
|
2020
|
Erik Daxberger
Eric Nalisnick
James Urquhart Allingham
Javier Antorán
José Miguel Hernández-Lobato
|
+
|
Compressing Images by Encoding Their Latent Representations with Relative Entropy Coding
|
2020
|
Gergely Flamich
Marton Havasi
José Miguel Hernández-Lobato
|
+
|
Predictive Complexity Priors
|
2020
|
Eric Nalisnick
Jonathan Gordon
José Miguel Hernández-Lobato
|
+
|
Depth Uncertainty in Neural Networks
|
2020
|
Javier Antorán
James Urquhart Allingham
José Miguel Hernández-Lobato
|
+
|
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
|
2020
|
Gregor N. C. Simm
Robert Pinsler
José Miguel Hernández-Lobato
|
+
|
Variational Depth Search in ResNets
|
2020
|
Javier Antorán
James Urquhart Allingham
José Miguel Hernández-Lobato
|
+
|
Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model
|
2019
|
Wenbo Gong
Sebastian Tschiatschek
Sebastian Nowozin
Richard E. Turner
José Miguel Hernández-Lobato
Cheng Zhang
|
+
|
Successor Uncertainties: exploration and uncertainty in temporal difference learning
|
2019
|
David M. Janz
Jiri Hron
P. Mazur
Katja Hofmann
José Miguel Hernández-Lobato
Sebastian Tschiatschek
|
+
|
A Generative Model for Molecular Distance Geometry
|
2019
|
Gregor N. C. Simm
José Miguel Hernández-Lobato
|
+
|
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection
|
2019
|
Erik Daxberger
José Miguel Hernández-Lobato
|
+
|
Icebreaker: Element-wise Active Information Acquisition with Bayesian Deep Latent Gaussian Model.
|
2019
|
Wenbo Gong
Sebastian Tschiatschek
Richard E. Turner
Sebastian Nowozin
José Miguel Hernández-Lobato
Cheng Zhang
|
+
|
'In-Between' Uncertainty in Bayesian Neural Networks
|
2019
|
Andrew Y. K. Foong
Yingzhen Li
José Miguel Hernández-Lobato
Richard E. Turner
|
+
|
A COLD Approach to Generating Optimal Samples.
|
2019
|
Omar Mahmood
José Miguel Hernández-Lobato
|
+
|
Interpretable Outcome Prediction with Sparse Bayesian Neural Networks in Intensive Care
|
2019
|
Anna-Lena Popkes
Hiske Overweg
Ari Ercole
Yingzhen Li
José Miguel Hernández-Lobato
Yordan Zaykov
Cheng Zhang
|
+
|
A Model to Search for Synthesizable Molecules
|
2019
|
John Bradshaw
Brooks Paige
Matt J. Kusner
Marwin Segler
José Miguel Hernández-Lobato
|
+
|
Minimal random code learning : Getting bits back from compressed model parameters
|
2019
|
Marton Havasi
Robert Peharz
José Miguel Hernández-Lobato
|
+
|
Bayesian Batch Active Learning as Sparse Subset Approximation
|
2019
|
Robert Pinsler
Jonathan Gordon
Eric Nalisnick
José Miguel Hernández-Lobato
|
+
|
Bayesian Batch Active Learning as Sparse Subset Approximation
|
2019
|
Robert Pinsler
Jonathan Gordon
Eric Nalisnick
José Miguel Hernández-Lobato
|
+
|
HM-VAEs: a Deep Generative Model for Real-valued Data with Heterogeneous Marginals
|
2019
|
Chao Ma
Sebastian Tschiatschek
Yingzhen Li
Richard E. Turner
José Miguel Hernández-Lobato
Cheng Zhang
|
+
|
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection
|
2019
|
Erik Daxberger
José Miguel Hernández-Lobato
|
+
|
A Generative Model for Molecular Distance Geometry
|
2019
|
Gregor N. C. Simm
José Miguel Hernández-Lobato
|
+
|
Icebreaker: Element-wise Active Information Acquisition with Bayesian Deep Latent Gaussian Model
|
2019
|
Wenbo Gong
Sebastian Tschiatschek
Richard E. Turner
Sebastian Nowozin
José Miguel Hernández-Lobato
Cheng Zhang
|
+
|
'In-Between' Uncertainty in Bayesian Neural Networks
|
2019
|
Andrew Y. K. Foong
Yingzhen Li
José Miguel Hernández-Lobato
Richard E. Turner
|
+
|
A COLD Approach to Generating Optimal Samples
|
2019
|
Omar Mahmood
José Miguel Hernández-Lobato
|
+
|
Interpretable Outcome Prediction with Sparse Bayesian Neural Networks in Intensive Care
|
2019
|
Hiske Overweg
Anna-Lena Popkes
Ari Ercole
Yingzhen Li
José Miguel Hernández-Lobato
Yordan Zaykov
Cheng Zhang
|
+
|
Fixing Variational Bayes: Deterministic Variational Inference for Bayesian Neural Networks
|
2018
|
Anqi Wu
Sebastian Nowozin
Edward Meeds
Richard E. Turner
José Miguel Hernández-Lobato
Alexander L. Gaunt
|
+
|
Ergodic Measure Preserving Flows
|
2018
|
Yichuan Zhang
José Miguel Hernández-Lobato
Zoubin Ghahramani
|
+
|
Meta-Learning For Stochastic Gradient MCMC.
|
2018
|
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
|
+
|
Variational Measure Preserving Flows.
|
2018
|
Yichuan Zhang
José Miguel Hernández-Lobato
Zoubin Ghahramani
|
+
|
Predicting Electron Paths.
|
2018
|
John Bradshaw
Matt J. Kusner
Brooks Paige
Marwin Segler
José Miguel Hernández-Lobato
|
+
|
A Generative Model For Electron Paths
|
2018
|
John Bradshaw
Matt J. Kusner
Brooks Paige
Marwin Segler
José Miguel Hernández-Lobato
|
+
|
Training Deep Gaussian Processes using Stochastic Expectation Propagation and Probabilistic Backpropagation
|
2018
|
Thang D. Bui
José Miguel Hernández-Lobato
Yingzhen Li
Daniel Hernández-Lobato
Richard E. Turner
Richard E. Turner
|
+
|
Taking gradients through experiments: LSTMs and memory proximal policy optimization for black-box quantum control
|
2018
|
Moritz August
José Miguel Hernández-Lobato
|
+
|
Stochastic Expectation Propagation for Large Scale Gaussian Process Classification
|
2018
|
Daniel Hernández-Lobato
José Miguel Hernández-Lobato
Yingzhen Li
Thang D. Bui
Richard E. Turner
|
+
|
Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules
|
2018
|
Rafael Gómez‐Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
Jorge Aguilera‐Iparraguirre
Timothy Hirzel
Ryan P. Adams
Alán Aspuru‐Guzik
|
+
|
Deep Gaussian Processes with Decoupled Inducing Inputs
|
2018
|
Marton Havasi
José Miguel Hernández-Lobato
Juan José Murillo-Fuentes
|
+
|
Variational Implicit Processes
|
2018
|
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
|
+
|
Meta-Learning for Stochastic Gradient MCMC
|
2018
|
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
|
+
|
Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo
|
2018
|
Marton Havasi
José Miguel Hernández-Lobato
Juan José Murillo-Fuentes
|
+
|
Minimal Random Code Learning: Getting Bits Back from Compressed Model Parameters
|
2018
|
Marton Havasi
Robert Peharz
José Miguel Hernández-Lobato
|
+
|
Successor Uncertainties: Exploration and Uncertainty in Temporal Difference Learning
|
2018
|
David M. Janz
Jiri Hron
P. Mazur
Katja Hofmann
José Miguel Hernández-Lobato
Sebastian Tschiatschek
|
+
|
Deconfounding Reinforcement Learning in Observational Settings
|
2018
|
Chaochao Lu
Bernhard Schölkopf
José Miguel Hernández-Lobato
|
+
|
Dropout as a Structured Shrinkage Prior
|
2018
|
Eric Nalisnick
José Miguel Hernández-Lobato
Padhraic Smyth
|
+
|
Deterministic Variational Inference for Robust Bayesian Neural Networks
|
2018
|
Anqi Wu
Sebastian Nowozin
Edward Meeds
Richard E. Turner
José Miguel Hernández-Lobato
Alexander L. Gaunt
|
+
|
EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE
|
2018
|
Chao Ma
Sebastian Tschiatschek
Konstantina Palla
José Miguel Hernández-Lobato
Sebastian Nowozin
Cheng Zhang
|
+
PDF
Chat
|
Taking Gradients Through Experiments: LSTMs and Memory Proximal Policy Optimization for Black-Box Quantum Control
|
2018
|
Moritz August
José Miguel Hernández-Lobato
|
+
|
Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo
|
2018
|
Marton Havasi
José Miguel Hernández-Lobato
Juan José Murillo-Fuentes
|
+
|
Ergodic Inference: Accelerate Convergence by Optimisation
|
2018
|
Yichuan Zhang
José Miguel Hernández-Lobato
|
+
|
A Generative Model For Electron Paths
|
2018
|
John L. Bradshaw
Matt J. Kusner
Brooks Paige
Marwin Segler
José Miguel Hernández-Lobato
|
+
|
Taking gradients through experiments: LSTMs and memory proximal policy optimization for black-box quantum control
|
2018
|
Moritz August
José Miguel Hernández-Lobato
|
+
|
Deep Gaussian Processes with Decoupled Inducing Inputs
|
2018
|
Marton Havasi
José Miguel Hernández-Lobato
Juan José Murillo-Fuentes
|
+
|
Decomposition of Uncertainty for Active Learning and Reliable Reinforcement Learning in Stochastic Systems.
|
2017
|
Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi‐Velez
Steffen Udluft
|
+
|
Grammar Variational Autoencoder
|
2017
|
Matt J. Kusner
Brooks Paige
José Miguel Hernández-Lobato
|
+
|
Bayesian Semisupervised Learning with Deep Generative Models
|
2017
|
Jonathan Gordon
José Miguel Hernández-Lobato
|
+
|
Uncertainty Decomposition in Bayesian Neural Networks with Latent Variables
|
2017
|
Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi‐Velez
Steffen Udluft
|
+
|
Actively Learning what makes a Discrete Sequence Valid
|
2017
|
David M. Janz
Jos van der Westhuizen
José Miguel Hernández-Lobato
|
+
|
Constrained Bayesian Optimization for Automatic Chemical Design
|
2017
|
Ryan‐Rhys Griffiths
José Miguel Hernández-Lobato
|
+
|
Learning a Generative Model for Validity in Complex Discrete Structures
|
2017
|
David M. Janz
Jos van der Westhuizen
Brooks Paige
Matt J. Kusner
José Miguel Hernández-Lobato
|
+
|
Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning
|
2017
|
Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi‐Velez
Steffen Udluft
|
+
|
Grammar Variational Autoencoder
|
2017
|
Matt J. Kusner
Brooks Paige
José Miguel Hernández-Lobato
|
+
|
Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space
|
2017
|
José Miguel Hernández-Lobato
James Requeima
Edward O. Pyzer‐Knapp
Alán Aspuru‐Guzik
|
+
|
GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution
|
2016
|
Matt J. Kusner
José Miguel Hernández-Lobato
|
+
|
GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution
|
2016
|
Matt J. Kusner
José Miguel Hernández-Lobato
|
+
|
Learning and Policy Search in Stochastic Dynamical Systems with Bayesian Neural Networks
|
2016
|
Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi‐Velez
Steffen Udluft
|
+
|
Learning and policy search in stochastic dynamical systems with Bayesian neural networks
|
2016
|
Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi‐Velez
Steffen Udluft
|
+
|
Sequence Tutor: Conservative Fine-Tuning of Sequence Generation Models with KL-control
|
2016
|
Natasha Jaques
Shixiang Gu
Dzmitry Bahdanau
José Miguel Hernández-Lobato
Richard E. Turner
Douglas Eck
|
+
|
Deep Gaussian Processes for Regression using Approximate Expectation Propagation
|
2016
|
Thang D. Bui
Daniel Hernández-Lobato
Yingzhen Li
José Miguel Hernández-Lobato
Richard E. Turner
|
+
|
GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution
|
2016
|
Matt J. Kusner
José Miguel Hernández-Lobato
|
+
|
Learning and Policy Search in Stochastic Dynamical Systems with Bayesian Neural Networks
|
2016
|
Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi‐Velez
Steffen Udluft
|
+
|
Predictive Entropy Search for Multi-objective Bayesian Optimization
|
2015
|
Daniel Hernández-Lobato
José Miguel Hernández-Lobato
Amar Shah
Ryan P. Adams
|
+
|
Black-box $\alpha$-divergence Minimization
|
2015
|
José Miguel Hernández-Lobato
Yingzhen Li
Mark Rowland
Daniel Hernández-Lobato
Thang D. Bui
Richard E. Turner
|
+
|
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
|
2015
|
José Miguel Hernández-Lobato
Ryan P. Adams
|
+
|
Predictive Entropy Search for Bayesian Optimization with Unknown Constraints
|
2015
|
José Miguel Hernández-Lobato
Michael A. Gelbart
Matthew W. Hoffman
Ryan P. Adams
Zoubin Ghahramani
|
+
|
Predictive Entropy Search for Bayesian Optimization with Unknown Constraints
|
2015
|
José Miguel Hernández-Lobato
Michael A. Gelbart
Matthew D. Hoffman
Ryan P. Adams
Zoubin Ghahramani
|
+
|
Stochastic Expectation Propagation
|
2015
|
Yingzhen Li
José Miguel Hernández-Lobato
Richard E. Turner
|
+
|
A General Framework for Constrained Bayesian Optimization using Information-based Search
|
2015
|
José Miguel Hernández-Lobato
Michael A. Gelbart
Ryan P. Adams
Matthew W. Hoffman
Zoubin Ghahramani
|
+
|
Stochastic Expectation Propagation for Large Scale Gaussian Process Classification
|
2015
|
Daniel Hernández-Lobato
José Miguel Hernández-Lobato
Yingzhen Li
Thang Bui
Richard E. Turner
|
+
|
Black-box $α$-divergence Minimization
|
2015
|
José Miguel Hernández-Lobato
Yingzhen Li
Mark Rowland
Daniel Hernández-Lobato
Thang Bui
Richard E. Turner
|
+
|
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
|
2015
|
José Miguel Hernández-Lobato
Ryan P. Adams
|
+
|
Predictive Entropy Search for Multi-objective Bayesian Optimization
|
2015
|
Daniel Hernández-Lobato
José Miguel Hernández-Lobato
Anoop Shah
Ryan P. Adams
|
+
|
Training Deep Gaussian Processes using Stochastic Expectation Propagation and Probabilistic Backpropagation
|
2015
|
Thang D. Bui
José Miguel Hernández-Lobato
Yingzhen Li
Daniel Hernández-Lobato
Richard E. Turner
|
+
|
Scalable Gaussian Process Classification via Expectation Propagation
|
2015
|
Daniel Hernández-Lobato
José Miguel Hernández-Lobato
|
+
|
Predictive Entropy Search for Efficient Global Optimization of Black-box Functions
|
2014
|
José Miguel Hernández-Lobato
Matthew W. Hoffman
Zoubin Ghahramani
|
+
|
Gaussian Process Volatility Model
|
2014
|
Yue Wu
José Miguel Hernández-Lobato
Zoubin Ghahramani
|
+
|
Predictive Entropy Search for Efficient Global Optimization of Black-box Functions
|
2014
|
José Miguel Hernández-Lobato
Matthew W. Hoffman
Zoubin Ghahramani
|
+
|
Dynamic Covariance Models for Multivariate Financial Time Series
|
2013
|
Yue Wu
José Miguel Hernández-Lobato
Zoubin Ghahramani
|
+
|
Gaussian Process Vine Copulas for Multivariate Dependence
|
2013
|
David Lopez‐Paz
José Miguel Hernández-Lobato
Zoubin Ghahramani
|
+
|
Semi-Supervised Domain Adaptation with Non-Parametric Copulas
|
2013
|
David López-Paz
José Miguel Hernández-Lobato
Bernhard Schölkopf
|
+
|
Gaussian Process Conditional Copulas with Applications to Financial Time Series
|
2013
|
José Miguel Hernández-Lobato
James Robert Lloyd
Daniel Hernández-Lobato
|
+
|
Convergent Expectation Propagation in Linear Models with Spike-and-slab Priors
|
2011
|
José Miguel Hernández-Lobato
Daniel Hernández-Lobato
|
+
|
Balancing flexibility and robustness in machine learning: semi-parametric methods and sparse linear models
|
2010
|
José Miguel Hernández-Lobato
|