Guan Wang

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
2
+ PDF Chat Brain tumor segmentation with Deep Neural Networks 2016 Mohammad Havaei
Axel Davy
David Warde-Farley
Antoine Biard
Aaron Courville
Yoshua Bengio
Chris Pal
Pierre-Marc Jodoin
Hugo Larochelle
1
+ Analysis of regression in game theory approach 2001 Stan Lipovetsky
Michael Conklin
1
+ Scikit-learn: Machine Learning in Python 2012 FabiĂĄn Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
1
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+ Federated Learning of Deep Networks using Model Averaging 2016 H. Brendan McMahan
Eider Moore
Daniel Ramage
Blaise AgĂŒera y Arcas
1
+ PDF Chat The Cityscapes Dataset for Semantic Urban Scene Understanding 2016 Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
1
+ End to End Learning for Self-Driving Cars 2016 Mariusz Bojarski
Davide Del Testa
Daniel Dworakowski
Bernhard Firner
Beat Flepp
Prasoon Goyal
Lawrence D. Jackel
Mathew Monfort
Urs MĂŒller
Jiakai Zhang
1
+ PDF Chat DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs 2017 Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Murphy
Alan Yuille
1
+ PDF Chat European Union Regulations on Algorithmic Decision Making and a “Right to Explanation” 2017 Bryce Goodman
Seth Flaxman
1
+ Federated Optimization: Distributed Machine Learning for On-Device Intelligence 2016 Jakub KonečnĂœ
H. Brendan McMahan
Daniel Ramage
Peter RichtĂĄrik
1
+ Variational Graph Auto-Encoders 2016 Thomas Kipf
Max Welling
1
+ PDF Chat Domain randomization for transferring deep neural networks from simulation to the real world 2017 Josh Tobin
Rachel Fong
Alex Ray
Jonas Schneider
Wojciech Zaremba
Pieter Abbeel
1
+ Learning Important Features Through Propagating Activation Differences 2017 Avanti Shrikumar
Peyton Greenside
Anshul Kundaje
1
+ Focal Loss for Dense Object Detection 2017 Tsung-Yi Lin
Priya Goyal
Ross Girshick
Kaiming He
Piotr DollĂĄr
1
+ Distilling a Neural Network Into a Soft Decision Tree 2017 Nicholas Frosst
Geoffrey E. Hinton
1
+ Junction Tree Variational Autoencoder for Molecular Graph Generation 2018 Wengong Jin
Regina Barzilay
Tommi Jaakkola
1
+ PDF Chat CIRL: Controllable Imitative Reinforcement Learning for Vision-Based Self-driving 2018 Xiaodan Liang
Tairui Wang
Luona Yang
Eric P. Xing
1
+ On Evaluation of Embodied Navigation Agents 2018 Peter Anderson
Anne Lynn S. Chang
Devendra Singh Chaplot
Alexey Dosovitskiy
Saurabh Gupta
Vladlen Koltun
Jana KoĆĄeckĂĄ
Jitendra Malik
Roozbeh Mottaghi
Manolis Savva
1
+ MolecularRNN: Generating realistic molecular graphs with optimized properties. 2019 Mariya Popova
Mykhailo Shvets
Junier B. Oliva
Olexandr Isayev
1
+ PDF Chat Multimodal End-to-End Autonomous Driving 2020 Yi Xiao
Felipe Codevilla
Akhil Gurram
Onay Urfalıoǧlu
Antonio M. LĂłpez
1
+ Sequence to Sequence Learning with Neural Networks 2014 Ilya Sutskever
Oriol Vinyals
Quoc V. Le
1
+ GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models 2018 Jiaxuan You
Rex Ying
Xiang Ren
William L. Hamilton
Jure Leskovec
1
+ Alchemy: A Quantum Chemistry Dataset for Benchmarking AI Models 2019 Guangyong Chen
Pengfei Chen
Chang‐Yu Hsieh
Chee‐Kong Lee
Benben Liao
Renjie Liao
Weiwen Liu
Jiezhong Qiu
Qiming Sun
Jie Tang
1
+ Graph U-Nets 2019 Hongyang Gao
Shuiwang Ji
1
+ PDF Chat A Survey of Autonomous Driving: <i>Common Practices and Emerging Technologies</i> 2020 Ekim Yurtsever
Jacob Lambert
Alexander Carballo
Kazuya Takeda
1
+ EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks 2019 Mingxing Tan
Quoc V. Le
1
+ How Powerful are Graph Neural Networks? 2018 Keyulu Xu
Weihua Hu
Jure Leskovec
Stefanie Jegelka
1
+ A Unified Approach to Interpreting Model Predictions 2017 Scott Lundberg
Su‐In Lee
1
+ PDF Chat End-to-End Driving Via Conditional Imitation Learning 2018 Felipe Codevilla
Matthias MĂŒller
Antonio M. LĂłpez
Vladlen Koltun
Alexey Dosovitskiy
1
+ A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning 2010 Stéphane Ross
Geoffrey J. Gordon
J. Andrew Bagnell
1
+ Virtual to Real Reinforcement Learning for Autonomous Driving 2017 Xinlei Pan
Yurong You
Ziyan Wang
Cewu Lu
1
+ Neural Machine Translation by Jointly Learning to Align and Translate 2015 Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
1
+ PDF Chat Learning to Drive from Simulation without Real World Labels 2019 Alex Bewley
Jessica Rigley
Yuxuan Liu
Jeffrey Hawke
Richard Shen
Vinh-Dieu Lam
Alex Kendall
1
+ Benchmarking Graph Neural Networks 2020 Vijay Prakash Dwivedi
Chaitanya K. Joshi
Thomas Laurent
Yoshua Bengio
Xavier Bresson
1
+ PDF Chat Exploring the Limitations of Behavior Cloning for Autonomous Driving 2019 Felipe Codevilla
Eder Santana
Antonio M. LĂłpez
Adrien Gaidon
1
+ PDF Chat A Survey of End-to-End Driving: Architectures and Training Methods 2020 Ardi Tampuu
Tambet Matiisen
Maksym Semikin
Dmytro Fishman
Naveed Muhammad
1
+ Reinforcement Learning with Augmented Data 2020 Michael Laskin
Kimin Lee
Adam Stooke
Lerrel Pinto
Pieter Abbeel
Aravind Srinivas
1
+ PDF Chat Multi-Modal Sensor Fusion-Based Deep Neural Network for End-to-End Autonomous Driving With Scene Understanding 2020 Zhiyu Huang
Chen Lv
Yang Xing
Jingda Wu
1
+ PDF Chat BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning 2020 Fisher Yu
Haofeng Chen
Xin Wang
Wenqi Xian
Yingying Chen
Fangchen Liu
Vashisht Madhavan
Trevor Darrell
1
+ PDF Chat RL-CycleGAN: Reinforcement Learning Aware Simulation-to-Real 2020 Kanishka Rao
C.J. Harris
Alex Irpan
Sergey Levine
Julian Ibarz
Mohi Khansari
1
+ Multi-Objective Molecule Generation using Interpretable Substructures 2020 Wengong Jin
Regina Barzilay
Tommi Jaakkola
1
+ TUDataset: A collection of benchmark datasets for learning with graphs 2020 Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
1
+ Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs 2020 Benedek RĂłzemberczki
Olivér Kiss
Rik Sarkar
1
+ PDF Chat Simulation-Based Reinforcement Learning for Real-World Autonomous Driving 2020 BƂaĆŒej OsiƄski
Adam Jakubowski
PaweƂ Zięcina
Piotr MiƂoƛ
Christopher Galias
Silviu Homoceanu
Henryk Michalewski
1
+ PDF Chat Urban Driving with Conditional Imitation Learning 2020 Jeffrey Hawke
Richard Shen
Corina Gurău
Siddharth Sharma
Daniele Reda
Nikolay Nikolov
P. Mazur
Sean Micklethwaite
Nicolas Griffiths
Amar Shah
1
+ PDF Chat Sim-to-Real Transfer of Robotic Control with Dynamics Randomization 2018 Xue Bin Peng
Marcin Andrychowicz
Wojciech Zaremba
Pieter Abbeel
1
+ Dirichlet Graph Variational Autoencoder 2020 Jia Li
Jianwei Yu
Jiajin Li
Honglei Zhang
Kangfei Zhao
Yu Rong
Hong Cheng
Junzhou Huang
1
+ Explainability of vision-based autonomous driving systems: Review and challenges. 2021 Éloi Zablocki
Hedi Ben-younes
Patrick PĂ©rez
Matthieu Cord
1
+ PDF Chat Deep Reinforcement Learning for Autonomous Driving: A Survey 2021 Bangalore Ravi Kiran
Ibrahim Sobh
Victor Talpaert
Patrick Mannion
Ahmad A. Al Sallab
Senthil Yogamani
Patrick PĂ©rez
1