+
PDF
Chat
|
OpenAI o1 System Card
|
2024
|
OpenAI
NULL AUTHOR_ID
Aaron Jaech
Adam Tauman Kalai
Adam Lerer
Adam J. Richardson
Ahmed El-Kishky
A. M. Low
Alec Helyar
Aleksander Mądry
|
+
|
Calibrated Language Models Must Hallucinate
|
2024
|
Adam Tauman Kalai
Santosh Vempala
|
+
|
Meta-Prompting: Enhancing Language Models with Task-Agnostic Scaffolding
|
2024
|
Mirac Süzgün
Adam Tauman Kalai
|
+
PDF
Chat
|
Social norm bias: residual harms of fairness-aware algorithms
|
2023
|
Myra Cheng
Maria De‐Arteaga
Lester Mackey
Adam Tauman Kalai
|
+
|
Loss Minimization Yields Multicalibration for Large Neural Networks
|
2023
|
Jarosław Błasiok
Parikshit Gopalan
Lunjia Hu
Adam Tauman Kalai
Preetum Nakkiran
|
+
|
Do Language Models Know When They're Hallucinating References?
|
2023
|
Ayush Agrawal
Lester Mackey
Adam Tauman Kalai
|
+
|
Textbooks Are All You Need
|
2023
|
Suriya Gunasekar
Yi Zhang
Jyoti Aneja
Caio César Teodoro Mendes
Allie Del Giorno
Sivakanth Gopi
Mojan Javaheripi
Piero Kauffmann
Gustavo de Rosa
Olli Saarikivi
|
+
|
Self-Taught Optimizer (STOP): Recursively Self-Improving Code Generation
|
2023
|
Eric Zelikman
Eliana Lorch
Lester Mackey
Adam Tauman Kalai
|
+
|
Testing Language Model Agents Safely in the Wild
|
2023
|
Silen Naihin
David Atkinson
Marc Green
Merwane Hamadi
Craig Swift
Douglas Schonholtz
Adam Tauman Kalai
David Bau
|
+
|
Calibrated Language Models Must Hallucinate
|
2023
|
Adam Tauman Kalai
Santosh Vempala
|
+
|
Why GANs are overkill for NLP
|
2022
|
David Alvarez-Melis
Vikas Garg
Adam Tauman Kalai
|
+
|
Language Models Can Teach Themselves to Program Better
|
2022
|
Patrick Haluptzok
Matthew R. Bowers
Adam Tauman Kalai
|
+
|
Using Large Language Models to Simulate Multiple Humans and Replicate Human Subject Studies
|
2022
|
Gati Aher
Rosa I. Arriaga
Adam Tauman Kalai
|
+
|
Partial Matrix Completion
|
2022
|
Varun Kanade
Elad Hazan
Adam Tauman Kalai
|
+
|
Recurrent Convolutional Neural Networks Learn Succinct Learning Algorithms
|
2022
|
Surbhi Goel
Sham M. Kakade
Adam Tauman Kalai
Cyril Zhang
|
+
|
A Theory of Unsupervised Translation Motivated by Understanding Animal Communication
|
2022
|
Shafi Goldwasser
David F. Gruber
Adam Tauman Kalai
Orr Paradise
|
+
|
Towards optimally abstaining from prediction with OOD test examples.
|
2021
|
Adam Tauman Kalai
Varun Kanade
|
+
|
Programming Puzzles
|
2021
|
Tal Schuster
Ashwin Kalyan
Oleksandr Polozov
Adam Tauman Kalai
|
+
|
Towards optimally abstaining from prediction.
|
2021
|
Adam Tauman Kalai
Varun Kanade
|
+
|
Efficient Learning with Arbitrary Covariate Shift
|
2021
|
Adam Tauman Kalai
Varun Kanade
|
+
|
Efficient learning with arbitrary covariate shift
|
2021
|
Adam Tauman Kalai
Varun Kanade
|
+
|
Social Norm Bias: Residual Harms of Fairness-Aware Algorithms
|
2021
|
Myra Cheng
Maria De‐Arteaga
Lester Mackey
Adam Tauman Kalai
|
+
|
Towards optimally abstaining from prediction with OOD test examples
|
2021
|
Adam Tauman Kalai
Varun Kanade
|
+
|
Efficient Learning with Arbitrary Covariate Shift
|
2021
|
Adam Tauman Kalai
Varun Kanade
|
+
|
Programming Puzzles
|
2021
|
Tal Schuster
Ashwin Kalyan
Oleksandr Polozov
Adam Tauman Kalai
|
+
|
Omnipredictors
|
2021
|
Parikshit Gopalan
Adam Tauman Kalai
Omer Reingold
Vatsal Sharan
Udi Wieder
|
+
|
Beyond Perturbations: Learning Guarantees with Arbitrary Adversarial Test Examples
|
2020
|
Shafi Goldwasser
Adam Tauman Kalai
Yael Tauman Kalai
Omar Montasser
|
+
|
Learn to Expect the Unexpected: Probably Approximately Correct Domain Generalization.
|
2020
|
Vikas Garg
Adam Tauman Kalai
Katrina Ligett
Zhiwei Steven Wu
|
+
|
The disparate equilibria of algorithmic decision making when individuals invest rationally
|
2020
|
Lydia T. Liu
Ashia Wilson
Nika Haghtalab
Adam Tauman Kalai
Christian Borgs
Jennifer Chayes
|
+
|
Beyond Perturbations: Learning Guarantees with Arbitrary Adversarial Test Examples
|
2020
|
Shafi Goldwasser
Adam Tauman Kalai
Yael Tauman Kalai
Omar Montasser
|
+
|
Learn to Expect the Unexpected: Probably Approximately Correct Domain Generalization
|
2020
|
Vikas Garg
Adam Tauman Kalai
Katrina Ligett
Zhiwei Steven Wu
|
+
|
The Disparate Equilibria of Algorithmic Decision Making when Individuals Invest Rationally
|
2019
|
Lydia T. Liu
Ashia Wilson
Nika Haghtalab
Adam Tauman Kalai
Christian Borgs
Jennifer Chayes
|
+
|
Humor in Word Embeddings: Cockamamie Gobbledegook for Nincompoops
|
2019
|
Limor Gultchin
Geneviève Patterson
Nancy K. Baym
Nathaniel Swinger
Adam Tauman Kalai
|
+
PDF
Chat
|
What are the Biases in My Word Embedding?
|
2019
|
Nathaniel Swinger
Maria De‐Arteaga
Neil T. Heffernan
Mark D.M. Leiserson
Adam Tauman Kalai
|
+
PDF
Chat
|
Bias in Bios
|
2019
|
Maria De‐Arteaga
Alexey Romanov
Hanna Wallach
Jennifer Chayes
Christian Borgs
Alexandra Chouldechova
Sahin Cem Geyik
Krishnaram Kenthapadi
Adam Tauman Kalai
|
+
|
What's in a Name? Reducing Bias in Bios without Access to Protected Attributes
|
2019
|
Alexey Romanov
Maria De‐Arteaga
Hanna Wallach
Jennifer Chayes
Christian Borgs
Alexandra Chouldechova
Sahin Cem Geyik
Krishnaram Kenthapadi
Anna Rumshisky
Adam Tauman Kalai
|
+
|
Learning to Prune: Speeding up Repeated Computations
|
2019
|
Daniel Alabi
Adam Tauman Kalai
Katrina Ligett
Cameron Musco
Christos Tzamos
Ellen Vitercik
|
+
|
Humor in Word Embeddings: Cockamamie Gobbledegook for Nincompoops
|
2019
|
Limor Gultchin
Geneviève Patterson
Nancy K. Baym
Nathaniel Swinger
Adam Tauman Kalai
|
+
|
The Disparate Equilibria of Algorithmic Decision Making when Individuals Invest Rationally
|
2019
|
Lydia T. Liu
Ashia C. Wilson
Nika Haghtalab
Adam Tauman Kalai
Christian Borgs
Jennifer Chayes
|
+
PDF
Chat
|
Usability of Humanly Computable Passwords
|
2018
|
Samira Samadi
Santosh Vempala
Adam Tauman Kalai
|
+
PDF
Chat
|
Glass-Box Program Synthesis: A Machine Learning Approach
|
2018
|
Konstantina Christakopoulou
Adam Tauman Kalai
|
+
|
When optimizing nonlinear objectives is no harder than linear objectives.
|
2018
|
Daniel Alabi
Nicole Immorlica
Adam Tauman Kalai
|
+
|
Unleashing Linear Optimizers for Group-Fair Learning and Optimization
|
2018
|
Daniel Alabi
Nicole Immorlica
Adam Tauman Kalai
|
+
|
Actively Avoiding Nonsense in Generative Models
|
2018
|
Steve Hanneke
Adam Tauman Kalai
Gautam Kamath
Christos Tzamos
|
+
|
What are the biases in my word embedding?
|
2018
|
Nathaniel Swinger
Maria De‐Arteaga
Neil T. Heffernan
Mark D.M. Leiserson
Adam Tauman Kalai
|
+
|
Unleashing Linear Optimizers for Group-Fair Learning and Optimization
|
2018
|
Daniel Alabi
Nicole Immorlica
Adam Tauman Kalai
|
+
|
Decoupled classifiers for fair and efficient machine learning
|
2017
|
Cynthia Dwork
Nicole Immorlica
Adam Tauman Kalai
Max Leiserson
|
+
|
Decoupled classifiers for fair and efficient machine learning
|
2017
|
Cynthia Dwork
Nicole Immorlica
Adam Tauman Kalai
Mark D.M. Leiserson
|
+
|
Beyond Bilingual: Multi-sense Word Embeddings using Multilingual Context
|
2017
|
Shyam Upadhyay
Kai-Wei Chang
Matt Taddy
Adam Tauman Kalai
James Zou
|
+
|
Supervising Unsupervised Learning
|
2017
|
Vikas Garg
Adam Tauman Kalai
|
+
|
Counterfactual Language Model Adaptation for Suggesting Phrases
|
2017
|
Kenneth C. Arnold
Kai-Wei Chang
Adam Tauman Kalai
|
+
|
Beyond Bilingual: Multi-sense Word Embeddings using Multilingual Context
|
2017
|
Shyam Upadhyay
Kai-Wei Chang
Matt Taddy
Adam Tauman Kalai
James Zou
|
+
|
Glass-Box Program Synthesis: A Machine Learning Approach
|
2017
|
Konstantina Christakopoulou
Adam Tauman Kalai
|
+
|
Decoupled classifiers for fair and efficient machine learning
|
2017
|
Cynthia Dwork
Nicole Immorlica
Adam Tauman Kalai
Max Leiserson
|
+
|
Usability of Humanly Computable Passwords
|
2017
|
Samira Samadi
Santosh Vempala
Adam Tauman Kalai
|
+
|
Meta-Unsupervised-Learning: A supervised approach to unsupervised learning.
|
2016
|
Vikas Garg
Adam Tauman Kalai
|
+
|
Quantifying and Reducing Stereotypes in Word Embeddings
|
2016
|
Tolga Bolukbasi
Kai-Wei Chang
James Zou
Venkatesh Saligrama
Adam Tauman Kalai
|
+
|
Meta-Unsupervised-Learning: A supervised approach to unsupervised learning
|
2016
|
Vikas Garg
Adam Tauman Kalai
|
+
|
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
|
2016
|
Tolga Bolukbasi
Kai-Wei Chang
James Zou
Venkatesh Saligrama
Adam Tauman Kalai
|
+
PDF
Chat
|
Crowdsourcing Feature Discovery via Adaptively Chosen Comparisons
|
2015
|
James Zou
Kamalika Chaudhuri
Adam Tauman Kalai
|
+
|
Crowdsourcing Feature Discovery via Adaptively Chosen Comparisons
|
2015
|
James Zou
Kamalika Chaudhuri
Adam Tauman Kalai
|
+
|
Feature Multi-Selection among Subjective Features
|
2013
|
Sivan Sabato
Adam Tauman Kalai
|
+
|
Textual Features for Programming by Example
|
2012
|
Aditya Krishna Menon
Omer Tamuz
Sumit Gulwani
Butler Lampson
Adam Tauman Kalai
|
+
|
Textual Features for Programming by Example
|
2012
|
Aditya Krishna Menon
Omer Tamuz
Sumit Gulwani
Butler Lampson
Adam Tauman Kalai
|
+
|
Efficient Learning of Generalized Linear and Single Index Models with Isotonic Regression
|
2011
|
Sham M. Kakade
Varun Kanade
Ohad Shamir
Adam Tauman Kalai
|
+
|
Adaptively Learning the Crowd Kernel
|
2011
|
Omer Tamuz
Ce Liu
Serge Belongie
Ohad Shamir
Adam Tauman Kalai
|
+
|
Efficient Learning of Generalized Linear and Single Index Models with Isotonic Regression
|
2011
|
Sham M. Kakade
Adam Tauman Kalai
Varun Kanade
Ohad Shamir
|
+
|
Compression without a common prior: An information-theoretic justification for ambiguity in language
|
2011
|
Brendan Juba
Adam Tauman Kalai
Sanjeev Khanna
Madhu Sudan
|
+
|
Adaptively Learning the Crowd Kernel
|
2011
|
Omer Tamuz
Ce Liu
Ohad Shamir
Adam Tauman Kalai
Serge Belongie
|
+
|
Efficient Learning of Generalized Linear and Single Index Models with Isotonic Regression
|
2011
|
Sham M. Kakade
Adam Tauman Kalai
Varun Kanade
Ohad Shamir
|
+
|
Dueling Algorithms
|
2011
|
Nicole Immorlica
Adam Tauman Kalai
Brendan Lucier
Ankur Moitra
Andrew Postlewaite
Moshe Tennenholtz
|
+
|
Decision trees are PAC-learnable from most product distributions: a smoothed analysis
|
2008
|
Adam Tauman Kalai
Shang‐Hua Teng
|
+
|
Simulated Annealing for Convex Optimization
|
2006
|
Adam Tauman Kalai
Santosh Vempala
|
+
|
Online convex optimization in the bandit setting: gradient descent without a gradient
|
2004
|
Abraham D. Flaxman
Adam Tauman Kalai
H. Brendan McMahan
|
+
PDF
Chat
|
Generating Random Factored Numbers, Easily
|
2003
|
Adam Tauman Kalai
|
+
|
Generating random factored numbers, easily
|
2002
|
Adam Tauman Kalai
|
+
|
Noise-tolerant learning, the parity problem, and the statistical query model
|
2000
|
Avrim Blum
Adam Tauman Kalai
Hal Wasserman
|
+
|
Noise-Tolerant Learning, the Parity Problem, and the Statistical Query Model
|
2000
|
Avrim Blum
Adam Tauman Kalai
Hal Wasserman
|