Author Description

Login to generate an author description

Ask a Question About This Mathematician

All published works (117)

Professional networks provide invaluable entree to opportunity through referrals and introductions. A rich literature shows they also serve to entrench and even exacerbate a status quo of privilege and disadvantage. … Professional networks provide invaluable entree to opportunity through referrals and introductions. A rich literature shows they also serve to entrench and even exacerbate a status quo of privilege and disadvantage. Hiring platforms, equipped with the ability to nudge link formation, provide a tantalizing opening for beneficial structural change. We anticipate that key to this prospect will be the ability to estimate the likelihood of edge formation in an evolving graph. Outcome-indistinguishable prediction algorithms ensure that the modeled world is indistinguishable from the real world by a family of statistical tests. Omnipredictors ensure that predictions can be post-processed to yield loss minimization competitive with respect to a benchmark class of predictors for many losses simultaneously, with appropriate post-processing. We begin by observing that, by combining a slightly modified form of the online K29 star algorithm of Vovk (2007) with basic facts from the theory of reproducing kernel Hilbert spaces, one can derive simple and efficient online algorithms satisfying outcome indistinguishability and omniprediction, with guarantees that improve upon, or are complementary to, those currently known. This is of independent interest. We apply these techniques to evolving graphs, obtaining online outcome-indistinguishable omnipredictors for rich -- possibly infinite -- sets of distinguishers that capture properties of pairs of nodes, and their neighborhoods. This yields, inter alia, multicalibrated predictions of edge formation with respect to pairs of demographic groups, and the ability to simultaneously optimize loss as measured by a variety of social welfare functions.
Traditionally, AI has been modeled within economics as a technology that impacts payoffs by reducing costs or refining information for human agents. Our position is that, in light of recent … Traditionally, AI has been modeled within economics as a technology that impacts payoffs by reducing costs or refining information for human agents. Our position is that, in light of recent advances in generative AI, it is increasingly useful to model AI itself as an economic agent. In our framework, each user is augmented with an AI agent and can consult the AI prior to taking actions in a game. The AI agent and the user have potentially different information and preferences over the communication, which can result in equilibria that are qualitatively different than in settings without AI.
We study the problem of a principal who wants to influence an agent's observable action, subject to an ex-post budget. The agent has a private type determining their cost function. … We study the problem of a principal who wants to influence an agent's observable action, subject to an ex-post budget. The agent has a private type determining their cost function. This paper endogenizes the value of the resource driving incentives, which holds no inherent value but is restricted by finite availability. We characterize the optimal mechanism, showing the emergence of a pooling region where the budget constraint binds for low-cost types. We then introduce a linear value for the transferable resource; as the principal's value increases, the mechanism demands more from agents with binding budget constraint but less from others.
We introduce a model of online algorithms subject to strict constraints on data retention. An online learning algorithm encounters a stream of data points, one per round, generated by some … We introduce a model of online algorithms subject to strict constraints on data retention. An online learning algorithm encounters a stream of data points, one per round, generated by some stationary process. Crucially, each data point can request that it be removed from memory $m$ rounds after it arrives. To model the impact of removal, we do not allow the algorithm to store any information or calculations between rounds other than a subset of the data points (subject to the retention constraints). At the conclusion of the stream, the algorithm answers a statistical query about the full dataset. We ask: what level of performance can be guaranteed as a function of $m$? We illustrate this framework for multidimensional mean estimation and linear regression problems. We show it is possible to obtain an exponential improvement over a baseline algorithm that retains all data as long as possible. Specifically, we show that $m = \textsc{Poly}(d, \log(1/\epsilon))$ retention suffices to achieve mean squared error $\epsilon$ after observing $O(1/\epsilon)$ $d$-dimensional data points. This matches the error bound of the optimal, yet infeasible, algorithm that retains all data forever. We also show a nearly matching lower bound on the retention required to guarantee error $\epsilon$. One implication of our results is that data retention laws are insufficient to guarantee the right to be forgotten even in a non-adversarial world in which firms merely strive to (approximately) optimize the performance of their algorithms. Our approach makes use of recent developments in the multidimensional random subset sum problem to simulate the progression of stochastic gradient descent under a model of adversarial noise, which may be of independent interest.
We develop a model of content filtering as a game between the filter and the content consumer, where the latter incurs information costs for examining the content. Motivating examples include … We develop a model of content filtering as a game between the filter and the content consumer, where the latter incurs information costs for examining the content. Motivating examples include censoring misinformation, spam/phish filtering, and recommender systems acting on a stream of content. When the attacker is exogenous, we show that improving the filter’s quality is weakly Pareto improving, but has no impact on equilibrium payoffs until the filter becomes sufficiently accurate. Further, if the filter does not internalize the consumer’s information costs, its lack of commitment power may render it useless and lead to inefficient outcomes. When the attacker is also strategic, improvements in filter quality may decrease equilibrium payoffs.
When deployed in the world, a learning agent such as a recommender system or a chatbot often repeatedly interacts with another learning agent (such as a user) over time. In … When deployed in the world, a learning agent such as a recommender system or a chatbot often repeatedly interacts with another learning agent (such as a user) over time. In many such two-agent systems, each agent learns separately and the rewards of the two agents are not perfectly aligned. To better understand such cases, we examine the learning dynamics of the two-agent system and the implications for each agent's objective. We model these systems as Stackelberg games with decentralized learning and show that standard regret benchmarks (such as Stackelberg equilibrium payoffs) result in worst-case linear regret for at least one player. To better capture these systems, we construct a relaxed regret benchmark that is tolerant to small learning errors by agents. We show that standard learning algorithms fail to provide sublinear regret, and we develop algorithms to achieve near-optimal $O(T^{2/3})$ regret for both players with respect to these benchmarks. We further design relaxed environments under which faster learning ($O(\sqrt{T})$) is possible. Altogether, our results take a step towards assessing how two-agent interactions in sequential and decentralized learning environments affect the utility of both agents.
We study mechanisms for selling a single item when buyers have private costs for participating in the mechanism. An agent's participation cost can also be interpreted as an outside option … We study mechanisms for selling a single item when buyers have private costs for participating in the mechanism. An agent's participation cost can also be interpreted as an outside option value that she must forego to participate. This substantially changes the revenue maximization problem, which becomes non- convex in the presence of participation costs. For multiple buyers, we show how to construct a (2 + ɛ)- approximately revenue-optimal mechanism in polynomial time. Our approach makes use of a many-buyers-to-single-buyer reduction, and in the single-buyer case our mechanism improves to an FPTAS. We also bound the menu size and the sample complexity for the optimal single-buyer mechanism. Moreover, we show that posting a single price in the single-buyer case is in fact optimal under the assumption that either (1) the participation cost is independent of the value, and the value distribution has decreasing marginal revenue or monotone hazard rate; or (2) the participation cost is a concave function of the value. When there are multiple buyers, we show that sequential posted pricing guarantees a large fraction of the optimal revenue under similar conditions.
Online content platforms commonly use engagement-based optimization when making recommendations. This encourages content creators to invest in quality, but also rewards gaming tricks such as clickbait. To understand the total … Online content platforms commonly use engagement-based optimization when making recommendations. This encourages content creators to invest in quality, but also rewards gaming tricks such as clickbait. To understand the total impact on the content landscape, we study a game between content creators competing on the basis of engagement metrics and analyze the equilibrium decisions about investment in quality and gaming. First, we show the content created at equilibrium exhibits a positive correlation between quality and gaming, and we empirically validate this finding on a Twitter dataset. Using the equilibrium structure of the content landscape, we then examine the downstream performance of engagement-based optimization along several axes. Perhaps counterintuitively, the average quality of content consumed by users can decrease at equilibrium as gaming tricks become more costly for content creators to employ. Moreover, engagement-based optimization can perform worse in terms of user utility than a baseline with random recommendations, and engagement-based optimization is also suboptimal in terms of realized engagement relative to quality-based optimization. Altogether, our results highlight the need to consider content creator incentives when evaluating a platform's choice of optimization metric.
In a classical online decision problem, a decision-maker who is trying to maximize her value inspects a sequence of arriving items to learn their values (drawn from known distributions) and … In a classical online decision problem, a decision-maker who is trying to maximize her value inspects a sequence of arriving items to learn their values (drawn from known distributions) and decides when to stop the process by taking the current item. The goal is to prove a ā€œprophet inequalityā€: that she can do approximately as well as a prophet with foreknowledge of all the values. In this work, we investigate this problem when the values are allowed to be correlated. Since nontrivial guarantees are impossible for arbitrary correlations, we consider a natural ā€œlinearā€ correlation structure introduced by Bateni et al. as a generalization of the common-base value model of Chawla et al. A key challenge is that threshold-based algorithms, which are commonly used for prophet inequalities, no longer guarantee good performance for linear correlations. We relate this roadblock to another ā€œaugmentationsā€ challenge that might be of independent interest: many existing prophet inequality algorithms are not robust to slight increases in the values of the arriving items. We leverage this intuition to prove bounds (matching up to constant factors) that decay gracefully with the amount of correlation of the arriving items. We extend these results to the case of selecting multiple items by designing a new (1+ o (1))-approximation ratio algorithm that is robust to augmentations.
Consider the following collective choice problem: a group of budget constrained agents must choose one of several alternatives. Is there a budget balanced mechanism that: i) does not depend on … Consider the following collective choice problem: a group of budget constrained agents must choose one of several alternatives. Is there a budget balanced mechanism that: i) does not depend on the specific characteristics of the group, ii) does not require unaffordable transfers, and iii) implements utilitarianism if the agents' preferences are quasilinear and their private information? We study the following procedure: every agent can express any intensity of support or opposition to each alternative, by transferring to the rest of the agents wealth equal to the square of the intensity expressed; and the outcome is determined by the sums of the expressed intensities. We prove that as the group grows large, in every equilibrium of this quadratic-transfers mechanism, each agent's transfer converges to zero, and the probability that the efficient outcome is chosen converges to one.
Motivated by applications such as voluntary carbon markets and educational testing, we consider a market for goods with varying but hidden levels of quality in the presence of a third-party … Motivated by applications such as voluntary carbon markets and educational testing, we consider a market for goods with varying but hidden levels of quality in the presence of a third-party certifier. The certifier can provide informative signals about the quality of products, and can charge for this service. Sellers choose both the quality of the product they produce and a certification. Prices are then determined in a competitive market. Under a single-crossing condition, we show that the levels of certification chosen by producers are uniquely determined at equilibrium. We then show how to reduce a revenue-maximizing certifier's problem to a monopolistic pricing problem with non-linear valuations, and design an FPTAS for computing the optimal slate of certificates and their prices. In general, both the welfare-optimal and revenue-optimal slate of certificates can be arbitrarily large.
We study a Bayesian persuasion problem where a sender wants to persuade a receiver to take a binary action, such as purchasing a product. The sender is informed about the … We study a Bayesian persuasion problem where a sender wants to persuade a receiver to take a binary action, such as purchasing a product. The sender is informed about the (binary) state of the world, such as whether the quality of the product is high or low, but only has limited information about the receiver's beliefs and utilities. Motivated by customer surveys, user studies, and recent advances in generative AI, we allow the sender to learn more about the receiver by querying an oracle that simulates the receiver's behavior. After a fixed number of queries, the sender commits to a messaging policy and the receiver takes the action that maximizes her expected utility given the message she receives. We characterize the sender's optimal messaging policy given any distribution over receiver types. We then design a polynomial-time querying algorithm that optimizes the sender's expected utility in this Bayesian persuasion game. We also consider approximate oracles, more general query structures, and costly queries.
We study the design of a decentralized two-sided matching market in which agents’ search is guided by the platform. There are finitely many agent types, each with (potentially random) preferences … We study the design of a decentralized two-sided matching market in which agents’ search is guided by the platform. There are finitely many agent types, each with (potentially random) preferences drawn from known type-specific distributions. Equipped with knowledge of these distributions, the platform guides the search process by determining the meeting rate between each pair of types from the two sides. Focusing on symmetric pairwise preferences in a continuum model, we first characterize the unique stationary equilibrium that arises given a feasible set of meeting rates. We then introduce the platform’s optimal directed search problem, which involves optimizing meeting rates to maximize equilibrium social welfare. We first show that incentive issues arising from congestion and cannibalization make the design problem fairly intricate. Nonetheless, we develop an efficiently computable search design whose corresponding equilibrium achieves at least [Formula: see text] the social welfare of the optimal design. In fact, our construction always recovers at least [Formula: see text] the first-best social welfare, where agents’ incentives are disregarded. Our search design is simple and easy to implement, as its corresponding bipartite graph consists of disjoint stars. Furthermore, our design implies the platform can substantially limit choice and yet induce an equilibrium with approximately optimal welfare. We offer alternative search designs with improved approximation factors for markets with certain special structures. Finally, we show that approximation is likely the best one can hope for by establishing that the problem of designing optimal directed search is [Formula: see text]-hard to even approximate beyond a certain constant factor. This paper was accepted by Omar Besbes, revenue management and market analytics. Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2022.4601 .
We consider Bandits with Knapsacks (henceforth, BwK ), a general model for multi-armed bandits under supply/budget constraints. In particular, a bandit algorithm needs to solve a well-known knapsack problem : … We consider Bandits with Knapsacks (henceforth, BwK ), a general model for multi-armed bandits under supply/budget constraints. In particular, a bandit algorithm needs to solve a well-known knapsack problem : find an optimal packing of items into a limited-size knapsack. The BwK problem is a common generalization of numerous motivating examples, which range from dynamic pricing to repeated auctions to dynamic ad allocation to network routing and scheduling. While the prior work on BwK focused on the stochastic version, we pioneer the other extreme in which the outcomes can be chosen adversarially. This is a considerably harder problem, compared to both the stochastic version and the ā€œclassicā€ adversarial bandits, in that regret minimization is no longer feasible. Instead, the objective is to minimize the competitive ratio : the ratio of the benchmark reward to algorithm’s reward. We design an algorithm with competitive ratio O (log T ) relative to the best fixed distribution over actions, where T is the time horizon; we also prove a matching lower bound. The key conceptual contribution is a new perspective on the stochastic version of the problem. We suggest a new algorithm for the stochastic version, which builds on the framework of regret minimization in repeated games and admits a substantially simpler analysis compared to prior work. We then analyze this algorithm for the adversarial version, and use it as a subroutine to solve the latter. Our algorithm is the first ā€œblack-box reductionā€ from bandits to BwK: it takes an arbitrary bandit algorithm and uses it as a subroutine. We use this reduction to derive several extensions.
The tendency for individuals to form social ties with others who are similar to themselves, known as homophily, is one of the most robust sociological principles. Since this phenomenon can … The tendency for individuals to form social ties with others who are similar to themselves, known as homophily, is one of the most robust sociological principles. Since this phenomenon can lead to patterns of interactions that segregate people along different demographic dimensions, it can also lead to inequalities in access to information, resources, and opportunities. As we consider potential interventions that might alleviate the effects of segregation, we face the challenge that homophily constitutes a pervasive and organic force that is difficult to push back against. Designing effective interventions can therefore benefit from identifying counterbalancing social processes that might be harnessed to work in opposition to segregation. In this work, we show that triadic closure -- another common phenomenon that posits that individuals with a mutual connection are more likely to be connected to one another -- can be one such process. In doing so, we challenge a long-held belief that triadic closure and homophily work in tandem. By analyzing several fundamental network models using popular integration measures, we demonstrate the desegregating potential of triadic closure. We further empirically investigate this effect on real-world dynamic networks, surfacing observations that mirror our theoretical findings. We leverage these insights to discuss simple interventions that can help reduce segregation in settings that exhibit an interplay between triadic closure and homophily. We conclude with a discussion on qualitative implications for the design of interventions in settings where individuals arrive in an online fashion, and the designer can influence the initial set of connections.
Individuals increasingly rely on social networking platforms to form opinions. However, these platforms typically aim to maximize engagement, which may not align with social good. In this paper, we introduce … Individuals increasingly rely on social networking platforms to form opinions. However, these platforms typically aim to maximize engagement, which may not align with social good. In this paper, we introduce an opinion dynamics model where agents are connected in a social network, and update their opinions based on their neighbors' opinions and on the content shown to them by the platform. We focus on a stochastic block model with two blocks, where the initial opinions of the individuals in different blocks are different. We prove that for large and dense enough networks the trajectory of opinion dynamics in such networks can be approximated well by a simple two-agent system. The latter admits tractable analytical analysis, which we leverage to provide interesting insights into the platform's impact on the social learning outcome in our original two-block model. Specifically, by using our approximation result, we show that agents' opinions approximately converge to some limiting opinion, which is either: consensus, where all agents agree, or persistent disagreement, where agents' opinions differ. We find that when the platform is weak and there is a high number of connections between agents with different initial opinions, a consensus equilibrium is likely. In this case, even if a persistent disagreement equilibrium arises, the polarization in this equilibrium, i.e., the degree of disagreement, is low. When the platform is strong, a persistent disagreement equilibrium is likely and the equilibrium polarization is high. A moderate platform typically leads to a persistent disagreement equilibrium with moderate polarization. We analyze the effect of initial polarization on consensus and explore numerically various extensions including a three block stochastic model and a correlation between initial opinions and agents' connection probabilities.
We study a communication game between a sender and receiver where the sender has access to a set of informative signals about a state of the world. The sender chooses … We study a communication game between a sender and receiver where the sender has access to a set of informative signals about a state of the world. The sender chooses one of her signals, called an ``anecdote'' and communicates it to the receiver. The receiver takes an action, yielding a utility for both players. Sender and receiver both care about the state of the world but are also influenced by a personal preference so that their ideal actions differ. We characterize perfect Bayesian equilibria when the sender cannot commit to a particular communication scheme. In this setting the sender faces ``persuasion temptation'': she is tempted to select a more biased anecdote to influence the receiver's action. Anecdotes are still informative to the receiver but persuasion comes at the cost of precision. This gives rise to ``informational homophily'' where the receiver prefers to listen to like-minded senders because they provide higher-precision signals. In particular, we show that a sender with access to many anecdotes will essentially send the minimum or maximum anecdote even though with high probability she has access to an anecdote close to the state of the world that would almost perfectly reveal it to the receiver. In contrast to the classic Crawford-Sobel model, full revelation is a knife-edge equilibrium and even small differences in personal preferences will induce highly polarized communication and a loss in utility for any equilibrium. We show that for fat-tailed anecdote distributions the receiver might even prefer to talk to poorly informed senders with aligned preferences rather than a knowledgeable expert whose preferences may differ from her own. We also show that under commitment differences in personal preferences no longer affect communication and the sender will generally report the most representative anecdote closest to the posterior mean for common distributions.
We develop a model of content filtering as a game between the filter and the content consumer, where the latter incurs information costs for examining the content. Motivating examples include … We develop a model of content filtering as a game between the filter and the content consumer, where the latter incurs information costs for examining the content. Motivating examples include censoring misinformation, spam/phish filtering, and recommender systems. When the attacker is exogenous, we show that improving the filter's quality is weakly Pareto improving, but has no impact on equilibrium payoffs until the filter becomes sufficiently accurate. Further, if the filter does not internalize the information costs, its lack of commitment power may render it useless and lead to inefficient outcomes. When the attacker is also strategic, improvements to filter quality may sometimes decrease equilibrium payoffs.
Standard ad auction formats do not immediately extend to settings where multiple size configurations and layouts are available to advertisers. In these settings, the sale of web advertising space increasingly … Standard ad auction formats do not immediately extend to settings where multiple size configurations and layouts are available to advertisers. In these settings, the sale of web advertising space increasingly resembles a combinatorial auction with complementarities, where truthful auctions such as the Vickrey–Clarke–Groves (VCG) auction can yield unacceptably low revenue. In ā€œFast Core Pricing for Rich Advertising Auctions,ā€ Niazadeh, Hartline, Immorlica, Khani, and Lucier study and suggest core-selecting auctions, which boost revenue by setting payments so that no group of agents, including the auctioneer, can jointly improve their utilities by switching to a different outcome. Their main result is a combinatorial algorithm that finds an approximate bidder-optimal core point with an almost linear number of calls to the welfare-maximization oracle. This algorithm is faster than previously proposed heuristics in the literature and has theoretical guarantees. By accompanying the theoretical study with an experimental study based on Microsoft Bing Ad Auction data, the authors conclude that core pricing is implementable even for very time-sensitive practical use cases such as real-time online advertising and can yield more revenue than the VCG or generalized second price auction.
We study the design of a decentralized two-sided matching market in which agents' search is guided by the platform. Each agent is of one of finitely many types and has … We study the design of a decentralized two-sided matching market in which agents' search is guided by the platform. Each agent is of one of finitely many types and has (potentially random) preferences drawn from known type-specific distributions. Equipped with such distributional knowledge, the platform guides the search process by determining the meeting rate between each pair of types from the two sides. Meanwhile, agents strategically accept or reject the potential partners whom they meet. Focusing on when agents have symmetric pairwise preferences in a continuum model, we first characterize the unique stationary equilibrium that arises given a feasible set of meeting rates. We then introduce the platform's optimal directed search problem, which involves optimizing meeting rates to maximize equilibrium social welfare. We show that incentive issues arising from congestion and cannibalization make the design problem fairly intricate. Nonetheless, we develop an efficiently computable solution whose corresponding equilibrium achieves at least 1/4 of the optimal social welfare. Our directed search design is simple and easy-to-implement, as its corresponding bipartite graph consists of disjoint stars. Furthermore, our solution implies that, with careful search design, the platform can substantially limit choice and yet induce an equilibrium with approximately optimal welfare. Finally, we show that approximation is likely the best we can hope for by establishing that the problem of designing optimal directed search is NP-hard to approximate beyond a certain constant factor.
A common assumption in auction theory is that the information available to the agents is given exogenously and that the auctioneer has full control over the market. In practice, agents … A common assumption in auction theory is that the information available to the agents is given exogenously and that the auctioneer has full control over the market. In practice, agents might be able to acquire information about their competitors before the auction (by exerting some costly effort), and might be able to resell acquired items in an aftermarket. The auctioneer has no control over those aspects, yet their existence influences agents' strategic behavior and the overall equilibrium welfare can strictly decrease as a result. We show that if an auction is smooth (e.g., first-price auction, all-pay auction), then the corresponding price of anarchy bound due to smoothness continues to hold in any environment with (a) information acquisition on opponents' valuations, and/or (b) an aftermarket satisfying two mild conditions (voluntary participation and weak budget balance). We also consider the special case with two ex ante symmetric bidders, where the first-price auction is known to be efficient in isolation. We show that information acquisition can lead to efficiency loss in this environment, but aftermarkets do not: any equilibrium of a first-price or all-pay auction combined with an aftermarket is still efficient.
We study mechanisms for selling a single item when buyers have private values for their outside options, which they forego by participating in the mechanism. This substantially changes the revenue … We study mechanisms for selling a single item when buyers have private values for their outside options, which they forego by participating in the mechanism. This substantially changes the revenue maximization problem. For example, the seller can strictly benefit from selling lotteries already in the single-buyer setting. We bound the menu size and the sample complexity for the optimal single-buyer mechanism. We then show that posting a single price is in fact optimal under the assumption that either (1) the outside option value is independent of the item value, and the item value distribution has decreasing marginal revenue or monotone hazard rate; or (2) the outside option value is a concave function of the item value. Moreover, when there are multiple buyers, we show that sequential posted pricing guarantees a large fraction of the optimal revenue under similar conditions.
Assortment optimization refers to the problem of designing a slate of products to offer potential customers, such as stocking the shelves in a convenience store. The price of each product … Assortment optimization refers to the problem of designing a slate of products to offer potential customers, such as stocking the shelves in a convenience store. The price of each product is fixed in advance, and a probabilistic choice function describes which product a customer will choose from any given subset. We introduce the combinatorial assortment problem, where each customer may select a bundle of products. We consider a choice model in which each consumer selects a utility-maximizing bundle subject to a private valuation function, and study the complexity of the resulting optimization problem. Our main result is an exact algorithm for additive k -demand valuations, under a model of vertical differentiation in which customers agree on the relative value of each pair of items but differ in their absolute willingness to pay. For valuations that are vertically differentiated but not necessarily additive k -demand, we show how to obtain constant approximations under a ā€œwell-pricedā€ condition, where each product’s price is sufficiently high. We further show that even for a single customer with known valuation, any sub-polynomial approximation to the problem requires exponentially many demand queries when the valuation function is XOS and that no FPTAS exists even when the valuation is succinctly representable.
We consider a model where an agent has a repeated decision to make and wishes to maximize their total payoff. Payoffs are influenced by an action taken by the agent, … We consider a model where an agent has a repeated decision to make and wishes to maximize their total payoff. Payoffs are influenced by an action taken by the agent, but also an unknown state of the world that evolves over time. Before choosing an action each round, the agent can purchase noisy samples about the state of the world. The agent has a budget to spend on these samples, and has flexibility in deciding how to spread that budget across rounds. We investigate the problem of choosing a sampling algorithm that optimizes total expected payoff. For example: is it better to buy samples steadily over time, or to buy samples in batches? We solve for the optimal policy, and show that it is a natural instantiation of the latter. Under a more general model that includes per-round fixed costs, we prove that a variation on this batching policy is a 2-approximation.
We study the design of a decentralized two-sided matching market in which agents' search is guided by the platform. There are finitely many agent types, each with (potentially random) preferences … We study the design of a decentralized two-sided matching market in which agents' search is guided by the platform. There are finitely many agent types, each with (potentially random) preferences drawn from known type-specific distributions. Equipped with knowledge of these distributions, the platform guides the search process by determining the meeting rate between each pair of types from the two sides. Focusing on symmetric pairwise preferences in a continuum model, we first characterize the unique stationary equilibrium that arises given a feasible set of meeting rates. We then introduce the platform's optimal directed search problem, which involves optimizing meeting rates to maximize equilibrium social welfare. We first show that incentive issues arising from congestion and cannibalization make the design problem fairly intricate. Nonetheless, we develop an efficiently computable search design whose corresponding equilibrium achieves at least 1/4 the social welfare of the optimal design. In fact, our construction always recovers at least 1/4 the first-best social welfare, where agents' incentives are disregarded. Our directed search design is simple and easy-to-implement, as its corresponding bipartite graph consists of disjoint stars. Furthermore, our design implies the platform can substantially limit choice and yet induce an equilibrium with an approximately optimal welfare. Finally, we show that approximation is likely the best we can hope for by establishing that the problem of designing optimal directed search is NP-hard to even approximate beyond a certain constant factor.
We study the design of a decentralized two-sided matching market in which agents’ search is guided by the platform. There are finitely many agent types, each with (potentially random) preferences … We study the design of a decentralized two-sided matching market in which agents’ search is guided by the platform. There are finitely many agent types, each with (potentially random) preferences drawn from known type-specific distributions. Equipped with knowledge of these distributions, the platform guides the search process by determining the meeting rate between each pair of types from the two sides. Focusing on symmetric pairwise preferences in a continuum model, we first characterize the unique stationary equilibrium that arises given a feasible set of meeting rates. We then introduce the platform’s optimal directed search problem, which involves optimizing meeting rates to maximize equilibrium social welfare. We first show that incentive issues arising from congestion and cannibalization make the design problem fairly intricate. Nonetheless, we develop an efficiently computable search design whose corresponding equilibrium achieves at least 1/4 the social welfare of the optimal design. In fact, our construction always recovers at least 1/4 the first-best social welfare, where agents’ incentives are disregarded. Our directed search design is simple and easy-to-implement, as its corresponding bipartite graph consists of disjoint stars. Furthermore, our design implies the platform can substantially limit choice and yet induce an equilibrium with an approximately optimal welfare. Finally, we show that approximation is likely the best we can hope for by establishing that the problem of designing optimal directed search is NP-hard to even approximate beyond a certain constant factor.
We study mechanisms for selling a single item when buyers have private costs for participating in the mechanism. An agent's participation cost can also be interpreted as an outside option … We study mechanisms for selling a single item when buyers have private costs for participating in the mechanism. An agent's participation cost can also be interpreted as an outside option value that she must forego to participate. This substantially changes the revenue maximization problem, which becomes non-convex in the presence of participation costs. For multiple buyers, we show how to construct a $(2+\epsilon)$-approximately revenue-optimal mechanism in polynomial time. Our approach makes use of a many-buyers-to-single-buyer reduction, and in the single-buyer case our mechanism improves to an FPTAS. We also bound the menu size and the sample complexity for the optimal single-buyer mechanism. Moreover, we show that posting a single price in the single-buyer case is in fact optimal under the assumption that either (1) the participation cost is independent of the value, and the value distribution has decreasing marginal revenue or monotone hazard rate; or (2) the participation cost is a concave function of the value. When there are multiple buyers, we show that sequential posted pricing guarantees a large fraction of the optimal revenue under similar conditions.
A prevalent assumption in auction theory is that the auctioneer has full control over the market and that the allocation she dictates is final. In practice, however, agents might be … A prevalent assumption in auction theory is that the auctioneer has full control over the market and that the allocation she dictates is final. In practice, however, agents might be able to resell acquired items in an aftermarket. A prominent example is the market for carbon emission allowances. These allowances are commonly allocated by the government using uniform-price auctions, and firms can typically trade these allowances among themselves in an aftermarket that may not be fully under the auctioneer's control. While the uniform-price auction is approximately efficient in isolation, we show that speculation and resale in aftermarkets might result in a significant welfare loss. Motivated by this issue, we consider three approaches, each ensuring high equilibrium welfare in the combined market. The first approach is to adopt smooth auctions such as discriminatory auctions. This approach is robust to correlated valuations and to participants acquiring information about others' types. However, discriminatory auctions have several downsides, notably that of charging bidders different prices for identical items, resulting in fairness concerns that make the format unpopular. Two other approaches we suggest are either using posted-pricing mechanisms, or using uniform-price auctions with anonymous reserves. We show that when using balanced prices, both these approaches ensure high equilibrium welfare in the combined market. The latter also inherits many of the benefits from uniform-price auctions such as price discovery, and can be introduced with a minor modification to auctions currently in use to sell carbon emission allowances.
Motivated by applications such as college admission and insurance rate determination, we propose an evaluation problem where the inputs are controlled by strategic individuals who can modify their features at … Motivated by applications such as college admission and insurance rate determination, we propose an evaluation problem where the inputs are controlled by strategic individuals who can modify their features at a cost. A learner can only partially observe the features, and aims to classify individuals with respect to a quality score. The goal is to design an evaluation mechanism that maximizes the overall quality score, i.e., welfare, in the population, taking any strategic updating into account. We further study the algorithmic aspect of finding the welfare maximizing evaluation mechanism under two specific settings in our model. When scores are linear and mechanisms use linear scoring rules on the observable features, we show that the optimal evaluation mechanism is an appropriate projection of the quality score. When mechanisms must use linear thresholds, we design a polynomial time algorithm with a (1/4)-approximation guarantee when the underlying feature distribution is sufficiently smooth and admits an oracle for finding dense regions. We extend our results to settings where the prior distribution is unknown and must be learned from samples.
In a classical online decision problem, a decision-maker who is trying to maximize her value inspects a sequence of arriving items to learn their values (drawn from known distributions), and … In a classical online decision problem, a decision-maker who is trying to maximize her value inspects a sequence of arriving items to learn their values (drawn from known distributions), and decides when to stop the process by taking the current item. The goal is to prove a "prophet inequality": that she can do approximately as well as a prophet with foreknowledge of all the values. In this work, we investigate this problem when the values are allowed to be correlated. Since non-trivial guarantees are impossible for arbitrary correlations, we consider a natural "linear" correlation structure introduced by Bateni et al. [ESA'15] as a generalization of the common-base value model of Chawla et al. [GEB'15].
We study the design of rating systems that incentivize (more) efficient social learning among self-interested agents. Agents arrive sequentially and are presented with a set of possible actions, each of … We study the design of rating systems that incentivize (more) efficient social learning among self-interested agents. Agents arrive sequentially and are presented with a set of possible actions, each of which yields a positive reward with an unknown probability. A disclosure policy sends messages about the rewards of previously-chosen actions to arriving agents. These messages can alter agents' incentives towards exploration, taking potentially sub-optimal actions for the sake of learning more about their rewards. Prior work achieves much progress with disclosure policies that merely recommend an action to each user, without any other supporting information, and sometimes recommend exploratory actions. All this work relies heavily on standard, yet very strong rationality assumptions. However, these assumptions are quite problematic in the context of the motivating applications: recommendation systems such as Yelp, Amazon, or Netflix, and macthing markets such as AirBnB. It is very unclear whether users would know and understand a complicated disclosure policy announced by the principal, let alone trust the principal to faithfully implement it. (The principal may deviate from the announced policy either intentionally, or due to insufficient information about the users, or because of bugs in implementation.) Even if the users understand the policy and trust that it was implemented as claimed, they might not react to it rationally, particularly given the lack of supporting information and the possibility of being singled out for exploration. For example, users may find such disclosure policies unacceptable and leave the system.
Motivated by applications such as college admission and insurance rate determination, we study a classification problem where the inputs are controlled by strategic individuals who can modify their features at … Motivated by applications such as college admission and insurance rate determination, we study a classification problem where the inputs are controlled by strategic individuals who can modify their features at a cost. A learner can only partially observe the features, and aims to classify individuals with respect to a quality score. The goal is to design a classification mechanism that maximizes the overall quality score in the population, taking any strategic updating into account. When scores are linear and mechanisms can assign their own scores to agents, we show that the optimal classifier is an appropriate projection of the quality score. For the more restrictive task of binary classification via linear thresholds, we construct a (1/4)-approximation to the optimal classifier when the underlying feature distribution is sufficiently smooth and admits an oracle for finding dense regions. We extend our results to settings where the prior distribution is unknown and must be learned from samples.
We consider a monopolist seller with n heterogeneous items, facing a single buyer. The buyer has a value for each item drawn independently according to (non-identical) distributions, and her value … We consider a monopolist seller with n heterogeneous items, facing a single buyer. The buyer has a value for each item drawn independently according to (non-identical) distributions, and her value for a set of items is additive. The seller aims to maximize his revenue. We suggest using the a priori better of two simple pricing methods: selling the items separately , each at its optimal price, and bundling together , in which the entire set of items is sold as one bundle at its optimal price. We show that for any distribution, this mechanism achieves a constant-factor approximation to the optimal revenue. Beyond its simplicity, this is the first computationally tractable mechanism to obtain a constant-factor approximation for this multi-parameter problem. We additionally discuss extensions to multiple buyers and to valuations that are correlated across items.
We study information aggregation in networks where agents make binary decisions (labeled incorrect or correct). Agents initially form independent private beliefs about the better decision, which is correct with probability … We study information aggregation in networks where agents make binary decisions (labeled incorrect or correct). Agents initially form independent private beliefs about the better decision, which is correct with probability $1/2+\delta$. The dynamics we consider are asynchronous (each round, a single agent updates their announced decision) and non-Bayesian (agents simply copy the majority announcements among their neighbors, tie-breaking in favor of their private signal). Our main result proves that when the network is a tree formed according to the preferential attachment model \cite{BarabasiA99}, with high probability, the process stabilizes in a correct majority within $O(n \log n/ \log\log n)$ rounds. We extend our results to other tree structures, including balanced $M$-ary trees for any $M$.
In a classical online decision problem, a decision-maker who is trying to maximize her value inspects a sequence of arriving items to learn their values (drawn from known distributions), and … In a classical online decision problem, a decision-maker who is trying to maximize her value inspects a sequence of arriving items to learn their values (drawn from known distributions), and decides when to stop the process by taking the current item. The goal is to prove a "prophet inequality": that she can do approximately as well as a prophet with foreknowledge of all the values. In this work, we investigate this problem when the values are allowed to be correlated. Since non-trivial guarantees are impossible for arbitrary correlations, we consider a natural "linear" correlation structure introduced by Bateni et al. [ESA 2015] as a generalization of the common-base value model of Chawla et al. [GEB 2015]. A key challenge is that threshold-based algorithms, which are commonly used for prophet inequalities, no longer guarantee good performance for linear correlations. We relate this roadblock to another "augmentations" challenge that might be of independent interest: many existing prophet inequality algorithms are not robust to slight increase in the values of the arriving items. We leverage this intuition to prove bounds (matching up to constant factors) that decay gracefully with the amount of correlation of the arriving items. We extend these results to the case of selecting multiple items by designing a new $(1+o(1))$ approximation ratio algorithm that is robust to augmentations.
Mechanisms with money are commonly designed under the assumption that agents are quasi-linear, meaning they have linear disutility for spending money. We study the implications when agents with non-linear (specifically, … Mechanisms with money are commonly designed under the assumption that agents are quasi-linear, meaning they have linear disutility for spending money. We study the implications when agents with non-linear (specifically, convex) disutility for payments participate in mechanisms designed for quasi-linear agents. We first show that any mechanism that is truthful for quasi-linear buyers has a simple best response function for buyers with non-linear disutility from payments, in which each bidder simply scales down her value for each potential outcome by a fixed factor, equal to her target return on investment (ROI). We call such a strategy ROI-optimal. We prove the existence of a Nash equilibrium in which agents use ROI-optimal strategies for a general class of allocation problems. Motivated by online marketplaces, we then focus on simultaneous second-price auctions for additive bidders and show that all ROI-optimal equilibria in this setting achieve constant-factor approximations to suitable welfare and revenue benchmarks.
Standard ad auction formats do not immediately extend to settings where multiple size configurations and layouts are available to advertisers. In these settings, the sale of web advertising space increasingly … Standard ad auction formats do not immediately extend to settings where multiple size configurations and layouts are available to advertisers. In these settings, the sale of web advertising space increasingly resembles a combinatorial auction with complementarities, where truthful auctions such as the Vickrey-Clarke-Groves (VCG) can yield unacceptably low revenue. We therefore study core selecting auctions, which boost revenue by setting payments so that no group of agents, including the auctioneer, can jointly improve their utilities by switching to a different outcome. Our main result is a combinatorial algorithm that finds an approximate bidder optimal core point with almost linear number of calls to the welfare maximization oracle. Our algorithm is faster than previously-proposed heuristics in the literature and has theoretical guarantees. We conclude that core pricing is implementable even for very time sensitive practical use cases such as realtime auctions for online advertising and can yield more revenue. We justify this claim experimentally using the Microsoft Bing Ad Auction data, through which we show our core pricing algorithm generates almost 26% more revenue than VCG on average, about 9% more revenue than other core pricing rules known in the literature, and almost matches the revenue of the standard Generalized Second Price (GSP) auction.
We study the consequences of job markets' heavy reliance on referrals. Referrals screen candidates and lead to better matches and increased productivity, but disadvantage job-seekers who have few or no … We study the consequences of job markets' heavy reliance on referrals. Referrals screen candidates and lead to better matches and increased productivity, but disadvantage job-seekers who have few or no connections to employed workers, leading to increased inequality. Coupled with homophily, referrals also lead to immobility: a demographic group's low current employment rate leads that group to have relatively low future employment as well. We identify conditions under which distributing referrals more evenly across a population not only reduces inequality, but also improves future productivity and economic mobility. We use the model to examine optimal policies, showing that one-time affirmative action policies involve short-run production losses, but lead to long-term improvements in equality, mobility, and productivity due to induced changes in future referrals. We also examine how the possibility of firing workers changes the effects of referrals.
We study a dynamic non-bipartite matching problem. There is a fixed set of agent types, and agents of a given type arrive and depart according to type-specific Poisson processes. Agent … We study a dynamic non-bipartite matching problem. There is a fixed set of agent types, and agents of a given type arrive and depart according to type-specific Poisson processes. Agent departures are not announced in advance. The value of a match is determined by the types of the matched agents. We present an online algorithm that is (1/8)-competitive with respect to the value of the optimal-in-hindsight policy, for arbitrary weighted graphs. Our algorithm treats agents heterogeneously, interpolating between immediate and delayed matching in order to thicken the market while still matching valuable agents opportunistically.
Motivated by applications such as college admission and insurance rate determination, we propose an evaluation problem where the inputs are controlled by strategic individuals who can modify their features at … Motivated by applications such as college admission and insurance rate determination, we propose an evaluation problem where the inputs are controlled by strategic individuals who can modify their features at a cost. A learner can only partially observe the features, and aims to classify individuals with respect to a quality score. The goal is to design an evaluation mechanism that maximizes the overall quality score, i.e., welfare, in the population, taking any strategic updating into account. We further study the algorithmic aspect of finding the welfare maximizing evaluation mechanism under two specific settings in our model. When scores are linear and mechanisms use linear scoring rules on the observable features, we show that the optimal evaluation mechanism is an appropriate projection of the quality score. When mechanisms must use linear thresholds, we design a polynomial time algorithm with a (1/4)-approximation guarantee when the underlying feature distribution is sufficiently smooth and admits an oracle for finding dense regions. We extend our results to settings where the prior distribution is unknown and must be learned from samples.
We consider Bandits with Knapsacks (henceforth, BwK), a general model for multi-armed bandits under supply/budget constraints. In particular, a bandit algorithm needs to solve a well-known knapsack problem: find an … We consider Bandits with Knapsacks (henceforth, BwK), a general model for multi-armed bandits under supply/budget constraints. In particular, a bandit algorithm needs to solve a well-known knapsack problem: find an optimal packing of items into a limited-size knapsack. The BwK problem is a common generalization of numerous motivating examples, which range from dynamic pricing to repeated auctions to dynamic ad allocation to network routing and scheduling. While the prior work on BwK focused on the stochastic version, we pioneer the other extreme in which the outcomes can be chosen adversarially. This is a considerably harder problem, compared to both the stochastic version and the "classic" adversarial bandits, in that regret minimization is no longer feasible. Instead, the objective is to minimize the competitive ratio: the ratio of the benchmark reward to algorithm's reward. We design an algorithm with competitive ratio O(log T) relative to the best fixed distribution over actions, where T is the time horizon; we also prove a matching lower bound. The key conceptual contribution is a new perspective on the stochastic version of the problem. We suggest a new algorithm for the stochastic version, which builds on the framework of regret minimization in repeated games and admits a substantially simpler analysis compared to prior work. We then analyze this algorithm for the adversarial version, and use it as a subroutine to solve the latter. Our algorithm is the first "black-box reduction" from bandits to BwK: it takes an arbitrary bandit algorithm and uses it as a subroutine. We use this reduction to derive several extensions.
It is common in recommendation systems that users both consume and produce information as they make strategic choices under uncertainty. While a social planner would balance "exploration" and "exploitation" using … It is common in recommendation systems that users both consume and produce information as they make strategic choices under uncertainty. While a social planner would balance "exploration" and "exploitation" using a multi-armed bandit algorithm, users' incentives may tilt this balance in favor of exploitation. We consider Bayesian Exploration: a simple model in which the recommendation system (the "principal") controls the information flow to the users (the "agents") and strives to incentivize exploration via information asymmetry. A single round of this model is a version of a well-known "Bayesian Persuasion game" from [24]. We allow heterogeneous users, relaxing a major assumption from prior work that users have the same preferences from one time step to another. The goal is now to learn the best personalized recommendations. One particular challenge is that it may be impossible to incentivize some of the user types to take some of the actions, no matter what the principal does or how much time she has. We consider several versions of the model, depending on whether and when the user types are reported to the principal, and design a near-optimal "recommendation policy" for each version. We also investigate how the model choice and the diversity of user types impact the set of actions that can possibly be "explored" by each type.
In consumer search, there is a set of items. An agent has a prior over her value for each item and can pay a cost to learn the instantiation of … In consumer search, there is a set of items. An agent has a prior over her value for each item and can pay a cost to learn the instantiation of her value. After exploring a subset of items, the agent chooses one and obtains a payoff equal to its value minus the search cost. We consider a sequential model of consumer search in which agents' values are correlated and each agent updates her priors based on the exploration of past agents before performing her search. Specifically, we assume the value is the sum of a common-value component, called the quality, and a subjective score. Fixing the variance of the total value, we say a population is more diverse if the subjective score has a larger variance. We ask how diversity impacts average utility. We show that intermediate diversity levels yield significantly higher social utility than the extreme cases of no diversity (when agents under-explore) or full diversity (when agents are unable to learn from each other) and quantify how the impact of the diversity level changes depending on the time spent searching.
When consequential decisions are informed by algorithmic input, individuals may feel compelled to alter their behavior in order to gain a system's approval. Models of agent responsiveness, termed "strategic manipulation," … When consequential decisions are informed by algorithmic input, individuals may feel compelled to alter their behavior in order to gain a system's approval. Models of agent responsiveness, termed "strategic manipulation," analyze the interaction between a learner and agents in a world where all agents are equally able to manipulate their features in an attempt to "trick" a published classifier. In cases of real world classification, however, an agent's ability to adapt to an algorithm is not simply a function of her personal interest in receiving a positive classification, but is bound up in a complex web of social factors that affect her ability to pursue certain action responses. In this paper, we adapt models of strategic manipulation to capture dynamics that may arise in a setting of social inequality wherein candidate groups face different costs to manipulation. We find that whenever one group's costs are higher than the other's, the learner's equilibrium strategy exhibits an inequality-reinforcing phenomenon wherein the learner erroneously admits some members of the advantaged group, while erroneously excluding some members of the disadvantaged group. We also consider the effects of interventions in which a learner subsidizes members of the disadvantaged group, lowering their costs in order to improve her own classification performance. Here we encounter a paradoxical result: there exist cases in which providing a subsidy improves only the learner's utility while actually making both candidate groups worse-off--even the group receiving the subsidy. Our results reveal the potentially adverse social ramifications of deploying tools that attempt to evaluate an individual's "quality" when agents' capacities to adaptively respond differ.
We study information aggregation in networks where agents make binary decisions (labeled incorrect or correct). Agents initially form independent private beliefs about the better decision, which is correct with probability … We study information aggregation in networks where agents make binary decisions (labeled incorrect or correct). Agents initially form independent private beliefs about the better decision, which is correct with probability $1/2+Ī“$. The dynamics we consider are asynchronous (each round, a single agent updates their announced decision) and non-Bayesian (agents simply copy the majority announcements among their neighbors, tie-breaking in favor of their private signal). Our main result proves that when the network is a tree formed according to the preferential attachment model \cite{BarabasiA99}, with high probability, the process stabilizes in a correct majority within $O(n \log n/ \log\log n)$ rounds. We extend our results to other tree structures, including balanced $M$-ary trees for any $M$.

Commonly Cited References

Simultaneous item auctions are simple and practical procedures for allocating items to bidders with potentially complex preferences. In a simultaneous auction, every bidder submits independent bids on all items simultaneously. … Simultaneous item auctions are simple and practical procedures for allocating items to bidders with potentially complex preferences. In a simultaneous auction, every bidder submits independent bids on all items simultaneously. The allocation and prices are then resolved for each item separately, based solely on the bids submitted on that item. We study the efficiency of Bayes-Nash equilibrium (BNE) outcomes of simultaneous first- and second-price auctions when bidders have complement-free (a.k.a. subadditive) valuations. While it is known that the social welfare of every pure Nash equilibrium (NE) constitutes a constant fraction of the optimal social welfare, a pure NE rarely exists, and moreover, the full information assumption is often unrealistic. Therefore, quantifying the welfare loss in Bayes-Nash equilibria is of particular interest. Previous work established a logarithmic bound on the ratio between the social welfare of a BNE and the expected optimal social welfare in both first-price auctions (Hassidim et al., 2011) and second-price auctions (Bhawalkar and Roughgarden, 2011), leaving a large gap between a constant and a logarithmic ratio. We introduce a new proof technique and use it to resolve both of these gaps in a unified way. Specifically, we show that the expected social welfare of any BNE is at least 1/2 of the optimal social welfare in the case of first-price auctions, and at least 1/4 in the case of second-price auctions.
Machine learning relies on the assumption that unseen test instances of a classification problem follow the same distribution as observed training data. However, this principle can break down when machine … Machine learning relies on the assumption that unseen test instances of a classification problem follow the same distribution as observed training data. However, this principle can break down when machine learning is used to make important decisions about the welfare (employment, education, health) of strategic individuals. Knowing information about the classifier, such individuals may manipulate their attributes in order to obtain a better classification outcome. As a result of this behavior -- often referred to as gaming -- the performance of the classifier may deteriorate sharply. Indeed, gaming is a well-known obstacle for using machine learning methods in practice; in financial policy-making, the problem is widely known as Goodhart's law. In this paper, we formalize the problem, and pursue algorithms for learning classifiers that are robust to gaming.
We initiate the study of efficient mechanism design with guaranteed good properties even when players participate in multiple mechanisms simultaneously or sequentially. We define the class of smooth mechanisms, related … We initiate the study of efficient mechanism design with guaranteed good properties even when players participate in multiple mechanisms simultaneously or sequentially. We define the class of smooth mechanisms, related to smooth games defined by Roughgarden, that can be thought of as mechanisms that generate approximately market clearing prices. We show that smooth mechanisms result in high quality outcome both in equilibrium and in learning outcomes in the full information setting, as well as in Bayesian equilibrium with uncertainty about participants. Our main result is to show that smooth mechanisms compose well: smoothness locally at each mechanism implies global efficiency.
We consider a general class of Bayesian Games where each players utility depends on his type (possibly multidimensional) and on the strategy profile and where players' types are distributed independently. … We consider a general class of Bayesian Games where each players utility depends on his type (possibly multidimensional) and on the strategy profile and where players' types are distributed independently. We show that if their full information version for any fixed instance of the type profile is a smooth game then the Price of Anarchy bound implied by the smoothness property, carries over to the Bayes-Nash Price of Anarchy. We show how some proofs from the literature (item bidding auctions, greedy auctions) can be cast as smoothness proofs or be simplified using smoothness. For first price item bidding with fractionally subadditive bidders we actually manage to improve by much the existing result \cite{Hassidim2011a} from 4 to $\frac{e}{e-1}\approx 1.58$. This also shows a very interesting separation between first and second price item bidding since second price item bidding has PoA at least 2 even under complete information. For a larger class of Bayesian Games where the strategy space of a player also changes with his type we are able to show that a slightly stronger definition of smoothness also implies a Bayes-Nash PoA bound. We show how weighted congestion games actually satisfy this stronger definition of smoothness. This allows us to show that the inefficiency bounds of weighted congestion games known in the literature carry over to incomplete versions where the weights of the players are private information. We also show how an incomplete version of a natural class of monotone valid utility games, called effort market games are universally $(1,1)$-smooth. Hence, we show that incomplete versions of effort market games where the abilities of the players and their budgets are private information has Bayes-Nash PoA at most 2.
We consider settings in which we wish to incentivize myopic agents (such as Airbnb landlords, who may emphasize short-term profits and property safety) to treat arriving clients fairly, in order … We consider settings in which we wish to incentivize myopic agents (such as Airbnb landlords, who may emphasize short-term profits and property safety) to treat arriving clients fairly, in order to prevent overall discrimination against individuals or groups. We model such settings in both classical and contextual bandit models in which the myopic agents maximize rewards according to current empirical averages, but are also amenable to exogenous payments that may cause them to alter their choices. Our notion of fairness asks that more qualified individuals are never (probabilistically) preferred over less qualifie ones [8].
We provide a reduction from revenue maximization to welfare maximization in multidimensional Bayesian auctions with arbitrary - possibly combinatorial - feasibility constraints and independent bidders with arbitrary - possibly combinatorial-demand … We provide a reduction from revenue maximization to welfare maximization in multidimensional Bayesian auctions with arbitrary - possibly combinatorial - feasibility constraints and independent bidders with arbitrary - possibly combinatorial-demand constraints, appropriately extending Myerson's single-dimensional result [21] to this setting. We also show that every feasible Bayesian auction - including in particular the revenue-optimal one - can be implemented as a distribution over virtual VCG allocation rules. A virtual VCG allocation rule has the following simple form: Every bidder's type ti is transformed into a virtual type fi(ti), via a bidder-specific function. Then, the allocation maximizing virtual welfare is chosen. Using this characterization, we show how to find and run the revenue-optimal auction given only black-box access to an implementation of the VCG allocation rule. We generalize this result to arbitrarily correlated bidders, introducing the notion of a second-order VCG allocation rule. Our results are computationally efficient for all multidimensional settings where the bidders are additive, or can be efficiently mapped to be additive, albeit the feasibility and demand constraints may still remain arbitrary combinatorial. In this case, our mechanisms run in time polynomial in the number of items and the total number of bidder types, but not type profiles. This is polynomial in the number of items, the number of bidders, and the cardinality of the support of each bidder's value distribution. For generic correlated distributions, this is the natural description complexity of the problem. The runtime can be further improved to polynomial in only the number of items and the number of bidders in itemsymmetric settings by making use of techniques from [15].
We study an online linear classification problem in which the data is generated by strategic agents who manipulate their features in an effort to change the classification outcome. In rounds, … We study an online linear classification problem in which the data is generated by strategic agents who manipulate their features in an effort to change the classification outcome. In rounds, the learner deploys a classifier, then an adversarially chosen agent arrives and possibly manipulates her features to optimally respond to the learner's choice of classifier. The learner has no knowledge of the agents' utility functions or "real" features, which may vary widely across agents. Instead, the learner is only able to observe their "revealed preferences", i.e., the manipulated feature vectors they provide. For a broad family of agent cost functions, we give a computationally efficient learning algorithm that is able to obtain diminishing "Stackelberg regret" --- a form of policy regret that guarantees that the learner is realizing loss nearly as small as that of the best classifier in hindsight, even allowing for the fact that agents would have best-responded differently to the optimal classifier.
The intuition that profit is optimized by maximizing marginal revenue is a guiding principle in microeconomics. In the classical auction theory for agents with quasi-linear utility and single-dimensional preferences, BR89 … The intuition that profit is optimized by maximizing marginal revenue is a guiding principle in microeconomics. In the classical auction theory for agents with quasi-linear utility and single-dimensional preferences, BR89 show that the optimal auction of M81 is in fact optimizing marginal revenue. In particular Myerson's virtual values are exactly the derivative of an appropriate revenue curve. This paper considers mechanism design in environments where the agents have multi-dimensional and non-linear preferences. Understanding good auctions for these environments is considered to be the main challenge in Bayesian optimal mechanism design. In these environments maximizing marginal revenue may not be optimal, and furthermore, there is sometimes no direct way to implement the marginal revenue maximization mechanism. Our contributions are three fold: we characterize the settings for which marginal revenue maximization is optimal (by identifying an important condition that we call revenue linearity), we give simple procedures for implementing marginal revenue maximization in general, and we show that marginal revenue maximization is approximately optimal. Our approximation factor smoothly degrades in a term that quantifies how far the environment is from an ideal one (i.e., where marginal revenue maximization is optimal). Because the marginal revenue mechanism is optimal for well-studied single-dimensional agents, our generalization immediately extends many approximation results for single-dimensional agents to more general preferences. Finally, one of the biggest open questions in Bayesian algorithmic mechanism design is in developing methodologies that are not brute-force in size of the agent type space (usually exponential in the dimension for multi-dimensional agents). Our methods identify a sub problem that, e.g., for unit-demand agents with values drawn from product distributions, enables approximation mechanisms that are polynomial in the dimension.
A multi-armed bandit problem - or, simply, a bandit problem - is a sequential allocation problem defined by a set of actions. At each time step, a unit resource is … A multi-armed bandit problem - or, simply, a bandit problem - is a sequential allocation problem defined by a set of actions. At each time step, a unit resource is allocated to an action and some observable payoff is obtained. The goal is to maximize the total payoff obtained in a sequence of allocations. The name bandit refers to the colloquial term for a slot machine (a "one-armed bandit" in American slang). In a casino, a sequential allocation problem is obtained when the player is facing many slot machines at once (a "multi-armed bandit"), and must repeatedly choose where to insert the next coin. Multi-armed bandit problems are the most basic examples of sequential decision problems with an exploration-exploitation trade-off. This is the balance between staying with the option that gave highest payoffs in the past and exploring new options that might give higher payoffs in the future. Although the study of bandit problems dates back to the 1930s, exploration-exploitation trade-offs arise in several modern applications, such as ad placement, website optimization, and packet routing. Mathematically, a multi-armed bandit is defined by the payoff process associated with each option. In this book, the focus is on two extreme cases in which the analysis of regret is particularly simple and elegant: independent and identically distributed payoffs and adversarial payoffs. Besides the basic setting of finitely many actions, it also analyzes some of the most important variants and extensions, such as the contextual bandit model. This monograph is an ideal reference for students and researchers with an interest in bandit problems.
We introduce a new model of stochastic bandits with adversarial corruptions which aims to capture settings where most of the input follows a stochastic pattern but some fraction of it … We introduce a new model of stochastic bandits with adversarial corruptions which aims to capture settings where most of the input follows a stochastic pattern but some fraction of it can be adversarially changed to trick the algorithm, e.g., click fraud, fake reviews and email spam. The goal of this model is to encourage the design of bandit algorithms that (i) work well in mixed adversarial and stochastic models, and (ii) whose performance deteriorates gracefully as we move from fully stochastic to fully adversarial models.
In the design and analysis of revenue-maximizing auctions, auction performance is typically measured with respect to a prior distribution over inputs. The most obvious source for such a distribution is … In the design and analysis of revenue-maximizing auctions, auction performance is typically measured with respect to a prior distribution over inputs. The most obvious source for such a distribution is past data. The goal of this paper is to understand how much data is necessary and sufficient to guarantee near-optimal expected revenue.
In many natural settings agents participate in multiple different auctions that are not simultaneous. In such auctions, future opportunities affect strategic considerations of the players. The goal of this paper … In many natural settings agents participate in multiple different auctions that are not simultaneous. In such auctions, future opportunities affect strategic considerations of the players. The goal of this paper is to develop a quantitative understanding of outcomes of such sequential auctions. In earlier work (Paes Leme et al. 2012) we initiated the study of the price of anarchy in sequential auctions. We considered sequential first price auctions in the full information model, where players are aware of all future opportunities, as well as the valuation of all players. In this paper, we study efficiency in sequential auctions in the Bayesian environment, relaxing the informational assumption on the players. We focus on two environments, both studied in the full information model in Paes Leme et al. 2012, matching markets and matroid auctions. In the full information environment, a sequential first price cut auction for matroid settings is efficient. In Bayesian environments this is no longer the case, as we show using a simple example with three players. Our main result is a bound of 3 on the price of anarchy in both matroid auctions and matching markets. To bound the price of anarchy we need to consider possible deviations at an equilibrium. In a sequential Bayesian environment the effect of deviations is more complex than in one-shot games; early bids allow others to infer information about the player's value. We create effective deviations despite the presence of this difficulty by introducing a bluffing technique of independent interest.
Consider a gambler who observes a sequence of independent, non-negative random numbers and is allowed to stop the sequence at any time, claiming a reward equal to the most recent … Consider a gambler who observes a sequence of independent, non-negative random numbers and is allowed to stop the sequence at any time, claiming a reward equal to the most recent observation. The famous prophet inequality of Krengel, Sucheston, and Garling asserts that a gambler who knows the distribution of each random variable can achieve at least half as much reward, in expectation, as a "prophet" who knows the sampled values of each random variable and can choose the largest one. We generalize this result to the setting in which the gambler and the prophet are allowed to make more than one selection, subject to a matroid constraint. We show that the gambler can still achieve at least half as much reward as the prophet; this result is the best possible, since it is known that the ratio cannot be improved even in the original prophet inequality, which corresponds to the special case of rank-one matroids. Generalizing the result still further, we show that under an intersection of $p$ matroid constraints, the prophet's reward exceeds the gambler's by a factor of at most $O(p)$, and this factor is also tight.
We study dynamic matching in an infinite-horizon stochastic market.While all agents are potentially compatible with each other, some are hard-to-match and others are easy-to-match.Agents prefer to be matched as soon … We study dynamic matching in an infinite-horizon stochastic market.While all agents are potentially compatible with each other, some are hard-to-match and others are easy-to-match.Agents prefer to be matched as soon as possible and matches are formed either bilaterally or indirectly through chains.We adopt an asymptotic approach and compute tight bounds on the limit of waiting time of agents under myopic policies that differ in matching technology and prioritization.We find that the market composition is a key factor in the desired matching technology and prioritization level.When hard-to-match agents arrive less frequently than easy-to-match ones (i) bilateral matching is almost as efficient as chains (waiting times scale similarly under both, though chains always outperform bilateral matching by a constant factor), and (ii) assigning priorities to hard-to-match agents improves their waiting times.When hard-to-match agents arrive more frequently, chains are much more efficient than bilateral matching and prioritization has no impact.We further conduct comparative statics on arrival rates.Somewhat surprisingly, we find that in a heterogeneous market and under bilateral matching, increasing arrival rate has a nonmonotone effect on waiting times, due to the fact that, under some market compositions, there is an adverse effect of competition.Our comparative statics shed light on the impact of merging markets and attracting altruistic agents (that initiate chains) or easy-to-match agents.This work uncovers fundamental differences between heterogeneous and homogeneous dynamic markets, and potentially helps policy makers to generate insights on the operations of matching markets such as kidney exchange programs.
We study simple and approximately optimal auctions for agents with a particular form of risk-averse preferences. We show that, for symmetric agents, the optimal revenue (given a prior distribution over … We study simple and approximately optimal auctions for agents with a particular form of risk-averse preferences. We show that, for symmetric agents, the optimal revenue (given a prior distribution over the agent preferences) can be approximated by the first-price auction (which is prior independent), and, for asymmetric agents, the optimal revenue can be approximated by an auction with simple form. These results are based on two technical methods. The first is for upper-bounding the revenue from a risk-averse agent. The second gives a payment identity for mechanisms with pay-your-bid semantics.
We consider a monopolist seller with n heterogeneous items, facing a single buyer. The buyer hasa value for each item drawn independently according to(non-identical) distributions, and his value for a … We consider a monopolist seller with n heterogeneous items, facing a single buyer. The buyer hasa value for each item drawn independently according to(non-identical) distributions, and his value for a set ofitems is additive. The seller aims to maximize his revenue.It is known that an optimal mechanism in this setting maybe quite complex, requiring randomization [19] and menusof infinite size [15]. Hart and Nisan [17] have initiated astudy of two very simple pricing schemes for this setting:item pricing, in which each item is priced at its monopolyreserve; and bundle pricing, in which the entire set ofitems is priced and sold as one bundle. Hart and Nisan [17]have shown that neither scheme can guarantee more thana vanishingly small fraction of the optimal revenue. Insharp contrast, we show that for any distributions, thebetter of item and bundle pricing is a constant-factorapproximation to the optimal revenue. We further discussextensions to multiple buyers and to valuations that arecorrelated across items.
We study high-dimensional distribution learning in an agnostic setting where an adversary is allowed to arbitrarily corrupt an epsilon fraction of the samples. Such questions have a rich history spanning … We study high-dimensional distribution learning in an agnostic setting where an adversary is allowed to arbitrarily corrupt an epsilon fraction of the samples. Such questions have a rich history spanning statistics, machine learning and theoretical computer science. Even in the most basic settings, the only known approaches are either computationally inefficient or lose dimension dependent factors in their error guarantees. This raises the following question: Is high-dimensional agnostic distribution learning even possible, algorithmically? In this work, we obtain the first computationally efficient algorithms for agnostically learning several fundamental classes of high-dimensional distributions: (1) a single Gaussian, (2) a product distribution on the hypercube, (3) mixtures of two product distributions (under a natural balancedness condition), and (4) mixtures of k Gaussians with identical spherical covariances. All our algorithms achieve error that is independent of the dimension, and in many cases depends nearly-linearly on the fraction of adversarially corrupted samples. Moreover, we develop a general recipe for detecting and correcting corruptions in high-dimensions, that may be applicable to many other problems.
Algorithms are often used to produce decision-making rules that classify or evaluate individuals. When these individuals have incentives to be classified a certain way, they may behave strategically to influence … Algorithms are often used to produce decision-making rules that classify or evaluate individuals. When these individuals have incentives to be classified a certain way, they may behave strategically to influence their outcomes. We develop a model for how strategic agents can invest effort in order to change the outcomes they receive, and we give a tight characterization of when such agents can be incentivized to invest specified forms of effort into improving their outcomes as opposed to "gaming" the classifier. We show that whenever any "reasonable" mechanism can do so, a simple linear mechanism suffices.
Bandit learning is characterized by the tension between long-term exploration and short-term exploitation. However, as has recently been noted, in settings in which the choices of the learning algorithm correspond … Bandit learning is characterized by the tension between long-term exploration and short-term exploitation. However, as has recently been noted, in settings in which the choices of the learning algorithm correspond to important decisions about individual people (such as criminal recidivism prediction, lending, and sequential drug trials), exploration corresponds to explicitly sacrificing the well-being of one individual for the potential future benefit of others. In such settings, one might like to run a ``greedy'' algorithm, which always makes the optimal decision for the individuals at hand --- but doing this can result in a catastrophic failure to learn. In this paper, we consider the linear contextual bandit problem and revisit the performance of the greedy algorithm. We give a smoothed analysis, showing that even when contexts may be chosen by an adversary, small perturbations of the adversary's choices suffice for the algorithm to achieve ``no regret'', perhaps (depending on the specifics of the setting) with a constant amount of initial training data. This suggests that in slightly perturbed environments, exploration and exploitation need not be in conflict in the linear setting.
Let $\mathbf{Y} = (Y_1, \cdots, Y_n)$ be random variables satisfying the weak negative dependence condition: $P(Y_i < a_i\mid Y_1 < a_1, \cdots, Y_{i-1}) \leq P(Y_i < a_i)$ for $i = … Let $\mathbf{Y} = (Y_1, \cdots, Y_n)$ be random variables satisfying the weak negative dependence condition: $P(Y_i < a_i\mid Y_1 < a_1, \cdots, Y_{i-1}) \leq P(Y_i < a_i)$ for $i = 2, \cdots, n$ and all constants $a_1, \cdots, a_n$. Let $\mathbf{X} = (X_1, \cdots, X_n)$ have independent components, where $X_i$ and $Y_i$ have the same marginal distribution, $i = 1, \cdots, n$. It is shown that $V(\mathbf{X}) \leq V(\mathbf{Y})$, where $V(\mathbf{Y}) = \sup \{EY_t: t \text{is a stopping rule for} Y_1,\cdots, Y_n\}$. Also, the classical inequality which for nonnegative variables compares the expected return of a prophet $E\{Y_1 \vee \cdots \vee Y_n\}$ with that of the statistician $V(\mathbf{Y})$, i.e., $E\{Y_1 \vee \cdots \vee Y_n\} < 2V(\mathbf{Y})$, holds for nonnegative $\mathbf{Y}$ satisfying the negative dependence condition. Moreover, this inequality can be obtained by an explicitly described threshold rule $t(b)$, i.e., $E\{Y_1 \vee \cdots \vee Y_n\} < 2EY_{t(b)}$. Generalizations of this prophet inequality are given. Extensions of the results to infinite sequences are obtained.
We study the fundamental problem of learning the parameters of a high-dimensional Gaussian in the presence of noise — where an ε-fraction of our samples were chosen by an adversary. … We study the fundamental problem of learning the parameters of a high-dimensional Gaussian in the presence of noise — where an ε-fraction of our samples were chosen by an adversary. We give robust estimators that achieve estimation error O(ε) in the total variation distance, which is optimal up to a universal constant that is independent of the dimension.In the case where just the mean is unknown, our robustness guarantee is optimal up to a factor of and the running time is polynomial in d and 1/ε. When both the mean and covariance are unknown, the running time is polynomial in d and quasipolynomial in 1/ε. Moreover all of our algorithms require only a polynomial number of samples. Our work shows that the same sorts of error guarantees that were established over fifty years ago in the one-dimensional setting can also be achieved by efficient algorithms in high-dimensional settings.
Consequential decision-making typically incentivizes individuals to behave strategically, tailoring their behavior to the specifics of the decision rule. A long line of work has therefore sought to counteract strategic behavior … Consequential decision-making typically incentivizes individuals to behave strategically, tailoring their behavior to the specifics of the decision rule. A long line of work has therefore sought to counteract strategic behavior by designing more conservative decision boundaries in an effort to increase robustness to the effects of strategic covariate shift.
We investigate the power of randomness in the context of a fundamental Bayesian optimal mechanism design problem - a single seller aims to maximize expected revenue by allocating multiple kinds … We investigate the power of randomness in the context of a fundamental Bayesian optimal mechanism design problem - a single seller aims to maximize expected revenue by allocating multiple kinds of resources to "unit-demand" agents with preferences drawn from a known distribution. When the agents' preferences are single-dimensional Myerson's seminal work [14] shows that randomness offers no benefit - the optimal mechanism is always deterministic. In the multi-dimensional case, where each agent's preferences are given by different values for each of the available services, Briest et al.[6] recently showed that the gap between the expected revenue obtained by an optimal randomized mechanism and an optimal deterministic mechanism can be unbounded even when a single agent is offered only 4 services. However, this large gap is attained through unnatural instances where values of the agent for different services are correlated in a specific way. We show that when the agent's values involve no correlation or a specific kind of positive correlation, the benefit of randomness is only a small constant factor (4 and 8 respectively). Our model of positively correlated values (that we call the common base value model) is a natural model for unit-demand agents and items that are substitutes. Our results extend to multiple agent settings as well.
Traditionally, the Bayesian optimal auction design problem has been considered either when the bidder values are i.i.d, or when each bidder is individually identifiable via her value distribution. The latter … Traditionally, the Bayesian optimal auction design problem has been considered either when the bidder values are i.i.d, or when each bidder is individually identifiable via her value distribution. The latter is a reasonable approach when the bidders can be classified into a few categories, but there are many instances where the classification of bidders is a continuum. For example, the classification of the bidders may be based on their annual income, their propensity to buy an item based on past behavior, or in the case of ad auctions, the click through rate of their ads. We introduce an alternate model that captures this aspect, where bidders are a priori identical, but can be distinguished based (only) on some side information the auctioneer obtains at the time of the auction. We extend the sample complexity approach of Dhangwatnotai et al. and Cole and Roughgarden to this model and obtain almost matching upper and lower bounds. As an aside, we obtain a revenue monotonicity lemma which may be of independent interest. We also show how to use Empirical Risk Minimization techniques to improve the sample complexity bound of Cole and Roughgarden for the non-identical but independent value distribution case.
The most prevalent notions of fairness in machine learning are statistical definitions: they fix a small collection of pre-defined groups, and then ask for parity of some statistic of the … The most prevalent notions of fairness in machine learning are statistical definitions: they fix a small collection of pre-defined groups, and then ask for parity of some statistic of the classifier across these groups. Constraints of this form are susceptible to intentional or inadvertent "fairness gerrymandering", in which a classifier appears to be fair on each individual group, but badly violates the fairness constraint on one or more structured subgroups defined over the protected attributes. We propose instead to demand statistical notions of fairness across exponentially (or infinitely) many subgroups, defined by a structured class of functions over the protected attributes. This interpolates between statistical definitions of fairness and recently proposed individual notions of fairness, but raises several computational challenges. It is no longer clear how to audit a fixed classifier to see if it satisfies such a strong definition of fairness. We prove that the computational problem of auditing subgroup fairness for both equality of false positive rates and statistical parity is equivalent to the problem of weak agnostic learning, which means it is computationally hard in the worst case, even for simple structured subclasses. We then derive two algorithms that provably converge to the best fair classifier, given access to oracles which can solve the agnostic learning problem. The algorithms are based on a formulation of subgroup fairness as a two-player zero-sum game between a Learner and an Auditor. Our first algorithm provably converges in a polynomial number of steps. Our second algorithm enjoys only provably asymptotic convergence, but has the merit of simplicity and faster per-step computation. We implement the simpler algorithm using linear regression as a heuristic oracle, and show that we can effectively both audit and learn fair classifiers on real datasets.
Complements between goods--where one good takes on added value in the presence of another--have been a thorn in the side of algorithmic mechanism designers. On the one hand, complements are … Complements between goods--where one good takes on added value in the presence of another--have been a thorn in the side of algorithmic mechanism designers. On the one hand, complements are common in the standard motivating applications for combinatorial auctions, like spectrum license auctions. On the other, welfare maximization in the presence of complements is notoriously difficult, and this intractability has stymied theoretical progress in the area. For example, there are no known positive results for combinatorial auctions in which bidder valuations are multi-parameter and non-complement-free, other than the relatively weak results known for general valuations.
For Bayesian combinatorial auctions, we present a general framework for approximately reducing the mechanism design problem for multiple buyers to the mechanism design problem for each individual buyer. Our frame- … For Bayesian combinatorial auctions, we present a general framework for approximately reducing the mechanism design problem for multiple buyers to the mechanism design problem for each individual buyer. Our frame- work can be applied to any setting which roughly satisfies the following assumptions: (i) the buyer's types must be distributed independently (not necessarily identically), (ii) the objective function must be linearly separable over the set of buyers, and (iii) the supply constraints must be the only constraints involving more than one buyer. Our framework is general in the sense that it makes no explicit assumption about any of the following: (i) the buyer's valuations (e.g., submodular, additive, etc), (ii) The distribution of types for each buyer, and (iii) the other constraints involving individual buyers (e.g., budget constraints, etc). We present two generic ra-buyer mechanisms that use 1- buyer mechanisms as black boxes. Assuming that we have an α-approximate 1-buyer mechanism for each buyer and assuming that no buyer ever needs more than 1/k of all copies of each item for some integer k ≄ 1, then our generic n- buyer mechanisms are γ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</sub> Ā· α-approximation of the optimal n-buyer mechanism, in which γ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</sub> is a constant which is at least 1 - 1/√(k+3). Observe that γ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</sub> is at least1/2 (for k = 1) and approaches 1 as k increases. As a byproduct of our construction, we improve a generalization of prophet inequalities. Furthermore, as applications of our main theorem, we improve several results from the literature.
It is widely believed that computing payments needed to induce truthful bidding is somehow harder than simply computing the allocation. We show that the opposite is true: creating a randomized … It is widely believed that computing payments needed to induce truthful bidding is somehow harder than simply computing the allocation. We show that the opposite is true: creating a randomized truthful mechanism is essentially as easy as a single call to a monotone allocation rule. Our main result is a general procedure to take a monotone allocation rule for a single-parameter domain and transform it (via a black-box reduction) into a randomized mechanism that is truthful in expectation and individually rational for every realization. The mechanism implements the same outcome as the original allocation rule with probability arbitrarily close to 1, and requires evaluating that allocation rule only once. We also provide an extension of this result to multiparameter domains and cycle-monotone allocation rules, under mild star-convexity and nonnegativity hypotheses on the type space and allocation rule, respectively. Because our reduction is simple, versatile, and general, it has many applications to mechanism design problems in which re-evaluating the allocation rule is either burdensome or informationally impossible. Applying our result to the multiarmed bandit problem, we obtain truthful randomized mechanisms whose regret matches the information-theoretic lower bound up to logarithmic factors, even though prior work showed this is impossible for truthful deterministic mechanisms. We also present applications to offline mechanism design, showing that randomization can circumvent a communication complexity lower bound for deterministic payments computation, and that it can also be used to create truthful shortest path auctions that approximate the welfare of the VCG allocation arbitrarily well, while having the same running time complexity as Dijkstra's algorithm.
Let X be a metric space. A dynamic system on X is a set-valued function $\varphi $ from X to X which satisfies $\varphi (x) \ne \emptyset $ for $x … Let X be a metric space. A dynamic system on X is a set-valued function $\varphi $ from X to X which satisfies $\varphi (x) \ne \emptyset $ for $x \in X$. It generates $\varphi $-sequences: \[x^{(t + 1)} \in \varphi (x^{(t)} ),\quad t = 0,1,2, \cdots ,x^{(0)} \in X.\] We study the stability properties of such dynamic systems. Necessary and sufficient criteria for stability of sets and points are given. The main result is, essentially, that a subset of X is stable iff it is an inverse image of a Pareto minimal point of a vector-valued function which decreases along $\varphi $-sequences. As a corollary we obtain a characterization of all stable sets and points of Stearns’ transfer schemes as generalized nucleoli. In particular, the ā€œlexicographic kernelā€, is always a stable set of the bargaining sets which may not include the nucleolus. All nonempty $\varepsilon $-cores are also stable sets of the bargaining sets.
We investigate the static and dynamic properties of a celebrated model of social segregation, providing a complete explanation of the mechanisms leading to segregation both in one- and two-dimensional systems. … We investigate the static and dynamic properties of a celebrated model of social segregation, providing a complete explanation of the mechanisms leading to segregation both in one- and two-dimensional systems. Standard statistical physics methods shed light on the rich phenomenology of this simple model, exhibiting static phase transitions typical of kinetic constrained models, nontrivial coarsening like in driven-particle systems and percolation-related phenomena.
Random variables, $X_1, \cdots, X_k$ are said to be negatively associated (NA) if for every pair of disjoint subsets $A_1, A_2$ of $\{1, 2, \cdots, k\}, \operatorname{Cov}\lbrack f(X_1, i \in … Random variables, $X_1, \cdots, X_k$ are said to be negatively associated (NA) if for every pair of disjoint subsets $A_1, A_2$ of $\{1, 2, \cdots, k\}, \operatorname{Cov}\lbrack f(X_1, i \in A_1), g(X_j, j \in A_2) \rbrack \leq 0$, for all nondecreasing functions $f, g$. The basic properties of negative association are derived. Especially useful is the property that nondecreasing functions of mutually exclusive subsets of NA random variables are NA. This property is shown not to hold for several other types of negative dependence recently proposed. One consequence is the inequality $P(X_i \leq x_i, i = 1, \cdots, k) \leq \prod^k_1P(X_i \leq x_i)$ for NA random variables $X_1, \cdots, X_k$, and the dual inequality resulting from reversing the inequalities inside the square brackets. In another application it is shown that negatively correlated normal random variables are NA. Other NA distributions are the (a) multinomial, (b) convolution of unlike multinomials, (c) multivariate hypergeometric, (d) Dirichlet, and (e) Dirichlet compound multinomial. Negative association is shown to arise in situations where the probability measure is permutation invariant. Applications of this are considered for sampling without replacement as well as for certain multiple ranking and selection procedures. In a somewhat striking example, NA and positive association representing quite strong opposing types of dependence, are shown to exist side by side in models of categorical data analysis.
This paper concerns results on comparisons of stopping values, and prophet inequalities for dependent random variables.We describe general results for negatively dependent random variables, and some examples for the case … This paper concerns results on comparisons of stopping values, and prophet inequalities for dependent random variables.We describe general results for negatively dependent random variables, and some examples for the case of positive dependence.
This paper gives an approach to implementing a second-order primal-dual interior point method. It uses a Taylor polynomial of second order to approximate a primal-dual trajectory. The computations for the … This paper gives an approach to implementing a second-order primal-dual interior point method. It uses a Taylor polynomial of second order to approximate a primal-dual trajectory. The computations for the second derivative are combined with the computations for the centering direction. Computations in this approach do not require that primal and dual solutions be feasible. Expressions are given to compute all the higher-order derivatives of the trajectory of interest. The implementation ensures that a suitable potential function is reduced by a constant amount at each iteration. There are several salient features of this approach. An adaptive heuristic for estimating the centering parameter is given. The approach used to compute the step length is also adaptive. A new practical approach to compute the starting point is given. This approach treats primal and dual problems symmetrically. Computational results on a subset of problems available from netlib are given. On mutually tested problems the results show that the proposed method requires approximately 40 percent fewer iterations than the implementation proposed in Lustig, Marsten, and Shanno [Tech. Rep. TR J-89-11, Georgia Inst. of Technology, Atlanta, 1989]. It requires approximately 50 percent fewer iterations than the dual affine scaling method in Adler, Karmarkar, Resende, and Veiga [Math. Programming, 44 (1989), pp. 297–336], and 35 percent fewer iterations than the second-order dual affine scaling method in the same paper. The new approach for estimating the centering parameter and finding the step length and the starting point have contributed to the reduction in the number of iterations. However, the contribution due to the use of second derivative is most significant. On the tested problems, on the average the implementation shown was found to be approximately two times faster than OBl (version 02/90) described in Lustig, Marsten, and Shanno and 2.5 times faster than MINOS 5.3 described in Murtagh and Saunders [Tech. Rep. SOL 83-20, Dept. of Operations Research, Stanford Univ., Stanford, CA, 1983].
Coalition formation is a key problem in automated negotiation among self-interested agents, and other electronic commerce applications. A coalition of agents can sometimes accomplish things that the individual agents cannot, … Coalition formation is a key problem in automated negotiation among self-interested agents, and other electronic commerce applications. A coalition of agents can sometimes accomplish things that the individual agents cannot, or can do things more efficiently. However, motivating the agents to abide to a solution requires careful analysis: only some of the solutions are stable in the sense that no group of agents is motivated to break off and form a new coalition. This constraint has been studied extensively in cooperative game theory. However, the computational questions around this constraint have received less attention. When it comes to coalition formation among software agents (that represent real-world parties), these questions become increasingly explicit.In this paper we define a concise general representation for games in characteristic form that relies on superadditivity, and show that it allows for efficient checking of whether a given outcome is in the core. We then show that determining whether the core is nonempty is NP-complete both with and without transferable utility. We demonstrate that what makes the problem hard in both cases is determining the collaborative possibilities (the set of outcomes possible for the grand coalition), by showing that if these are given, the problem becomes tractable in both cases. However, we then demonstrate that for a hybrid version of the problem, where utility transfer is possible only within the grand coalition, the problem remains NP-complete even when the collaborative possibilities are given.
We consider the problem of fitting a linear model to data held by individuals who are concerned about their privacy. Incentivizing most players to truthfully report their data to the … We consider the problem of fitting a linear model to data held by individuals who are concerned about their privacy. Incentivizing most players to truthfully report their data to the analyst constrains our design to mechanisms that provide a privacy guarantee to the participants; we use differential privacy to model individuals' privacy losses. This immediately poses a problem, as differentially private computation of a linear model necessarily produces a biased estimation, and existing approaches to design mechanisms to elicit data from privacy-sensitive individuals do not generalize well to biased estimators. We overcome this challenge through an appropriate design of the computation and payment scheme.
We study infinitely repeated games in settings of imperfect monitoring. We first prove a family of theorems that show that when the signals observed by the players satisfy a condition … We study infinitely repeated games in settings of imperfect monitoring. We first prove a family of theorems that show that when the signals observed by the players satisfy a condition known as $(\epsilon, \gamma)$-differential privacy, that the folk theorem has little bite: for values of $\epsilon$ and $\gamma$ sufficiently small, for a fixed discount factor, any equilibrium of the repeated game involve players playing approximate equilibria of the stage game in every period. Next, we argue that in large games ($n$ player games in which unilateral deviations by single players have only a small impact on the utility of other players), many monitoring settings naturally lead to signals that satisfy $(\epsilon,\gamma)$-differential privacy, for $\epsilon$ and $\gamma$ tending to zero as the number of players $n$ grows large. We conclude that in such settings, the set of equilibria of the repeated game collapse to the set of equilibria of the stage game.
We consider an application of multi-armed bandits to internet advertising (specifically, to dynamic ad allocation in the pay-per-click model, with uncertainty on the click probabilities). We focus on an important … We consider an application of multi-armed bandits to internet advertising (specifically, to dynamic ad allocation in the pay-per-click model, with uncertainty on the click probabilities). We focus on an important practical issue that advertisers are constrained in how much money they can spend on their ad campaigns. This issue has not been considered in the prior work on bandit-based approaches for ad allocation, to the best of our knowledge. We define a simple, stylized model where an algorithm picks one ad to display in each round, and each ad has a \emph{budget}: the maximal amount of money that can be spent on this ad. This model admits a natural variant of UCB1, a well-known algorithm for multi-armed bandits with stochastic rewards. We derive strong provable guarantees for this algorithm.
We present algorithms for a class of resource allocation problems both in the online setting with stochastic input and in the offline setting. This class of problems contains many interesting … We present algorithms for a class of resource allocation problems both in the online setting with stochastic input and in the offline setting. This class of problems contains many interesting special cases such as the Adwords problem. In the online setting we introduce a new distributional model called the adversarial stochastic input model, which is a generalization of the i.i.d model with unknown distributions, where the distributions can change over time. In this model we give a 1-O(ε) approximation algorithm for the resource allocation problem, with almost the weakest possible assumption: the ratio of the maximum amount of resource consumed by any single request to the total capacity of the resource, and the ratio of the profit contributed by any single request to the optimal profit is at most (ε2/log(1/ε)2)/(log n + log (1/ε)) where n is the number of resources available. There are instances where this ratio is #949;2/log n such that no randomized algorithm can have a competitive ratio of 1-o(ε) even in the i.i.d model. The upper bound on ratio that we require improves on the previous upper-bound for the i.i.d case by a factor of n.
We give a O (√log n )-approximation algorithm for the sparsest cut, edge expansion, balanced separator, and graph conductance problems. This improves the O (log n )-approximation of Leighton and … We give a O (√log n )-approximation algorithm for the sparsest cut, edge expansion, balanced separator, and graph conductance problems. This improves the O (log n )-approximation of Leighton and Rao (1988). We use a well-known semidefinite relaxation with triangle inequality constraints. Central to our analysis is a geometric theorem about projections of point sets in R d , whose proof makes essential use of a phenomenon called measure concentration. We also describe an interesting and natural ā€œapproximate certificateā€ for a graph's expansion, which involves embedding an n -node expander in it with appropriate dilation and congestion. We call this an expander flow.
We consider a scenario in which a database stores sensitive data of users and an analyst wants to estimate statistics of the data. The users may suffer a cost when … We consider a scenario in which a database stores sensitive data of users and an analyst wants to estimate statistics of the data. The users may suffer a cost when their data are used in which case they should be compensated. The analyst wishes to get an accurate estimate, while the users want to maximize their utility. We want to design a mechanism that can estimate statistics accurately without compromising users' privacy.
Bargaining networks model the behavior of a set of players that need to reach pairwise agreements for making profits. Nash bargaining solutions are special outcomes of such games that are … Bargaining networks model the behavior of a set of players that need to reach pairwise agreements for making profits. Nash bargaining solutions are special outcomes of such games that are both stable and balanced. Kleinberg and Tardos proved a sharp algorithmic characterization of such outcomes, but left open the problem of how the actual bargaining process converges to them. A partial answer was provided by Azar et al. who proposed a distributed algorithm for constructing Nash bargaining solutions, but without polynomial bounds on its convergence rate. In this paper, we introduce a simple and natural model for this process, and study its convergence rate to Nash bargaining solutions. At each time step, each player proposes a deal to each of her neighbors. The proposal consists of a share of the potential profit in case of agreement. The share is chosen to be balanced in Nash's sense as far as this is feasible (with respect to the current best alternatives for both players). We prove that, whenever the Nash bargaining solution is unique (and satisfies a positive gap condition) this dynamics converges to it in polynomial time. Our analysis is based on an approximate decoupling phenomenon between the dynamics on different substructures of the network. This approach may be of general interest for the analysis of local algorithms on networks.
By a modification of the method that was applied in (Korolev and Shevtsova, 2010), here the inequalities $Ī”_n\leq0.3328(β_3+0.429)/\sqrt{n}$ and $Ī”_n\leq0.33554(β_3+0.415)/\sqrt{n}$ are proved for the uniform distance $Ī”_n$ between the standard … By a modification of the method that was applied in (Korolev and Shevtsova, 2010), here the inequalities $Ī”_n\leq0.3328(β_3+0.429)/\sqrt{n}$ and $Ī”_n\leq0.33554(β_3+0.415)/\sqrt{n}$ are proved for the uniform distance $Ī”_n$ between the standard normal distribution function and the distribution function of the normalized sum of an arbitrary number $n\geq1$ of independent identically distributed random variables with zero mean, unit variance and finite third absolute moment $β_3$. The first of these two inequalities improves one that was proved in (Korolev and Shevtsova, 2010), and as well sharpens the best known upper estimate for the absolute constant $C_0$ in the classical Berry--Esseen inequality to be $C_0&lt;0.4756$, since $0.3328(β_3+0.429)\leq0.3328\cdot1.429β_3&lt;0.4756β_3$ by virtue of the condition $β_3\geq1$. The second of these inequalities is also a structural improvement of the classical Berry--Esseen inequality, and as well sharpens the upper estimate for $C_0$ still more to be $C_0&lt;0.4748$.