+
PDF
Chat
|
Expert Study on Interpretable Machine Learning Models with Missing Data
|
2024
|
Lena Stempfle
Arthur James
Julie Josse
Tobias Gauss
Fredrik Johansson
|
+
PDF
Chat
|
Federated Causal Inference: Multi-Centric ATE Estimation beyond
Meta-Analysis
|
2024
|
RĂ©mi Khellaf
Aurélien Bellet
Julie Josse
|
+
|
To be or not to be, when synthetic data meet clinical pharmacology: A focused study on pharmacogenetics
|
2024
|
JeanâBaptiste Woillard
Clément Benoist
Alexandre DestĂšre
Marc Labriffe
Giulia Marchello
Julie Josse
Pierre Marquet
|
+
PDF
Chat
|
Quantifying Treatment Effects: Estimating Risk Ratios in Causal Inference
|
2024
|
Ahmed Boughdiri
Julie Josse
Erwan Scornet
|
+
|
On the consistency of supervised learning with missing values
|
2024
|
Julie Josse
Jacob M. Chen
Nicolas Prost
Gaël Varoquaux
Erwan Scornet
|
+
|
Re-weighting the randomized controlled trial for generalization: finite-sample error and variable selection
|
2024
|
Bénédicte Colnet
Julie Josse
Gaël Varoquaux
Erwan Scornet
|
+
PDF
Chat
|
What Is a Good Imputation Under MAR Missingness?
|
2024
|
Jeffrey NĂ€f
Julie Josse
|
+
PDF
Chat
|
Causal Inference Methods for Combining Randomized Trials and Observational Studies: A Review
|
2024
|
Bénédicte Colnet
Imke Mayer
Guanhua Chen
Awa Dieng
Ruohong Li
Gaël Varoquaux
Jean-Philippe Vert
Julie Josse
Shu Yang
|
+
PDF
Chat
|
Generalizing treatment effects with incomplete covariates: Identifying assumptions and multiple imputation algorithms
|
2023
|
Imke Mayer
Julie Josse
|
+
|
Efficient and robust transfer learning of optimal individualized treatment regimes with right-censored survival data
|
2023
|
Pan Zhao
Julie Josse
Shu Yang
|
+
|
Risk ratio, odds ratio, risk difference... Which causal measure is easier to generalize?
|
2023
|
Bénédicte Colnet
Julie Josse
Gaël Varoquaux
Erwan Scornet
|
+
|
Conformal Prediction with Missing Values
|
2023
|
Margaux Zaffran
Aymeric Dieuleveut
Julie Josse
Yaniv Romano
|
+
|
Variable importance for causal forests: breaking down the heterogeneity of treatment effects
|
2023
|
Clément Bénard
Julie Josse
|
+
|
MMD-based Variable Importance for Distributional Random Forest
|
2023
|
Clément Bénard
Jeffrey NĂ€f
Julie Josse
|
+
|
AdaptiveConformal: An R Package for Adaptive Conformal Inference
|
2023
|
Herbert Susmann
Antoine Chambaz
Julie Josse
|
+
PDF
Chat
|
Reweighting the RCT for generalization: finite sample error and variable selection
|
2022
|
Bénédicte Colnet
Julie Josse
Gaël Varoquaux
Erwan Scornet
|
+
PDF
Chat
|
R-miss-tastic: a unified platform for missing values methods and workflows
|
2022
|
Imke Mayer
Aude Sportisse
Julie Josse
Nicholas Tierney
Nathalie VillaâVialaneix
|
+
PDF
Chat
|
Robust LassoâZero for sparse corruption and model selection with missing covariates
|
2022
|
Pascaline Descloux
Claire Boyer
Julie Josse
Aude Sportisse
Sylvain Sardy
|
+
PDF
Chat
|
Document sans titre
|
2022
|
Consortium Icubam
Laurent BonnasseâGahot
Maxime DĂ©nĂšs
Gabriel Dulac-Arnold
Sertan Girgin
François Husson
Valentin Iovene
Julie Josse
Antoine Kimmoun
François P. Landes
|
+
|
Benchmarking missing-values approaches for predictive models on health databases v2
|
2022
|
Alexandre PĂ©rez
Gaël Varoquaux
Marine Le Morvan
Julie Josse
JeanâBaptiste Poline
|
+
PDF
Chat
|
Causal effect on a target population: A sensitivity analysis to handle missing covariates
|
2022
|
Bénédicte Colnet
Julie Josse
Gaël Varoquaux
Erwan Scornet
|
+
PDF
Chat
|
Benchmarking missing-values approaches for predictive models on health databases
|
2022
|
Alexandre PĂ©rez
Gaël Varoquaux
Marine Le Morvan
Julie Josse
JeanâBaptiste Poline
|
+
|
Benchmarking missing-values approaches for predictive models on health databases
|
2022
|
Alexandre PĂ©rez
Gaël Varoquaux
Marine Le Morvan
Julie Josse
JeanâBaptiste Poline
|
+
|
Reweighting the RCT for generalization: finite sample error and variable selection
|
2022
|
Bénédicte Colnet
Julie Josse
Gaël Varoquaux
Erwan Scornet
|
+
PDF
Chat
|
Adaptive Bayesian SLOPE: Model Selection With Incomplete Data
|
2021
|
Wei Jiang
MaĆgorzata Bogdan
Julie Josse
Szymon Majewski
BĆaĆŒej Miasojedow
Veronika RoÄkovĂĄ
|
+
|
Generalizing a causal effect: sensitivity analysis and missing covariates
|
2021
|
Bénédicte Colnet
Julie Josse
Erwan Scornet
Gaël Varoquaux
|
+
|
Linear Regression and Logistic Regression with Missing Covariates [R package misaem version 1.0.1]
|
2021
|
Wei Jiang
Julie Josse
|
+
|
Nonparametric Imputation by Data Depth
|
2021
|
Pavlo Mozharovskyi
Julie Josse
François Husson
|
+
|
What's a good imputation to predict with missing values?
|
2021
|
Marine Le Morvan
Julie Josse
Erwan Scornet
Gaël Varoquaux
|
+
|
Model-based Clustering with Missing Not At Random Data
|
2021
|
Aude Sportisse
Matthieu Marbac
Christophe Biernacki
Claire Boyer
Gilles Celeux
Julie Josse
Fabien Laporte
|
+
|
Causal effect on a target population: a sensitivity analysis to handle missing covariates
|
2021
|
Bénédicte Colnet
Julie Josse
Erwan Scornet
Gaël Varoquaux
|
+
|
Generalizing treatment effects with incomplete covariates: identifying assumptions and multiple imputation algorithms
|
2021
|
Imke Mayer
Julie Josse
Traumabase Group
|
+
PDF
Chat
|
NeuMiss networks: differentiable programming for supervised learning with missing values
|
2020
|
Marine Le Morvan
Julie Josse
Thomas Moreau
Erwan Scornet
Gaël Varoquaux
|
+
PDF
Chat
|
Causal inference methods for combining randomized trials and observational studies: a review
|
2020
|
Bénédicte Colnet
Imke Mayer
Guanhua Chen
Awa Dieng
Ruohong Li
Gaël Varoquaux
JeanâPhilippe Vert
Julie Josse
Shu Yang
|
+
PDF
Chat
|
Doubly robust treatment effect estimation with missing attributes
|
2020
|
Imke Mayer
Erik Sverdrup
Tobias Gauss
Jean-Denis Moyer
Stefan Wager
Julie Josse
|
+
PDF
Chat
|
Imputation and low-rank estimation with Missing Not At Random data
|
2020
|
Aude Sportisse
Claire Boyer
Julie Josse
|
+
|
ICU Bed Availability Monitoring and analysis in the Grand Est region of France during the COVID-19 epidemic
|
2020
|
Consortium Icubam
Laurent BonnasseâGahot
Maxime DĂ©nĂšs
Gabriel Dulac-Arnold
Sertan Girgin
François Husson
Valentin Iovene
Julie Josse
Antoine Kimmoun
François P. Landes
|
+
PDF
Chat
|
Robust Lasso-Zero for sparse corruption and model selection with missing covariates
|
2020
|
Pascaline Descloux
Claire Boyer
Julie Josse
Aude Sportisse
Sylvain Sardy
|
+
|
MissDeepCausal: causal inference from incomplete data using deep latent variable models
|
2020
|
Imke Mayer
Julie Josse
FĂ©lix Raimundo
Jean-Philippe Vert
|
+
|
Missing Data Imputation using Optimal Transport
|
2020
|
Boris Muzellec
Julie Josse
Claire Boyer
Marco Cuturi
|
+
|
NeuMiss networks: differentiable programming for supervised learning with missing values
|
2020
|
Marine Le Morvan
Julie Josse
Thomas Moreau
Erwan Scornet
Gaël Varoquaux
|
+
|
VARCLUST: clustering variables using dimensionality reduction
|
2020
|
Stanislaw Wilczynski
MaĆgorzata Bogdan
Piotr Sobczyk
Stanisaaw Wilczy
Maagorzata Bogdan
Piotr Graczyk
Julie Josse
Fabien Panloup
Valérie Seegers
Mateusz Staniak
|
+
|
MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent Variable Models
|
2020
|
Imke Mayer
Julie Josse
FĂ©lix Raimundo
JeanâPhilippe Vert
|
+
PDF
Chat
|
Logistic regression with missing covariatesâParameter estimation, model selection and prediction within a joint-modeling framework
|
2019
|
Wei Jiang
Julie Josse
Marc Lavielle
|
+
|
Doubly robust treatment effect estimation with missing attributes
|
2019
|
Imke Mayer
Erik Sverdrup
Tobias Gauss
Jean-Denis Moyer
Stefan Wager
Julie Josse
|
+
|
Estimation with informative missing data in the low-rank model with random effects
|
2019
|
Aude Sportisse
Claire Boyer
Julie Josse
|
+
PDF
Chat
|
Main Effects and Interactions in Mixed and Incomplete Data Frames
|
2019
|
GeneviĂšve Robin
Olga Klopp
Julie Josse
Ăric Moulines
Robert Tibshirani
|
+
|
Low-rank model with covariates for count data with missing values
|
2019
|
GeneviĂšve Robin
Julie Josse
Ăric Moulines
Sylvain Sardy
|
+
PDF
Chat
|
Imputation of Mixed Data With Multilevel Singular Value Decomposition
|
2019
|
François Husson
Julie Josse
Balasubramanian Narasimhan
GeneviĂšve Robin
|
+
PDF
Chat
|
Hypothesis Tests for Principal Component Analysis When Variables are Standardized
|
2019
|
Johannes Forkman
Julie Josse
HansâPeter Piepho
|
+
|
Biases in feature selection with missing data
|
2019
|
Borja Seijo-Pardo
Amparo AlonsoâBetanzos
Kristin P. Bennett
VerĂłnica BolĂłnâCanedo
Julie Josse
Mehreen Saeed
Isabelle Guyon
|
+
PDF
Chat
|
Nonparametric Imputation by Data Depth
|
2019
|
Pavlo Mozharovskyi
Julie Josse
François Husson
|
+
|
Imputation and low-rank estimation with Missing Non At Random data
|
2019
|
Aude Sportisse
Claire Boyer
Julie Josse
|
+
|
Imputation of Mixed Data With Multilevel Singular Value Decomposition
|
2019
|
François Husson
Julie Josse
Balasubramanian Narasimhan
GeneviĂšve Robin
|
+
|
Main Effects and Interactions in Mixed and Incomplete Data Frames
|
2019
|
Geneviéve Robin
Olga Klopp
Julie Josse
Ăric Moulines
Robert Tibshirani
|
+
|
On the consistency of supervised learning with missing values
|
2019
|
Julie Josse
Nicolas Prost
Erwan Scornet
Gaël Varoquaux
|
+
|
Adaptive Bayesian SLOPE -- High-dimensional Model Selection with Missing Values
|
2019
|
Wei Jiang
MaĆgorzata Bogdan
Julie Josse
BĆaĆŒej Miasojedow
Veronika RoÄkovĂĄ
|
+
|
Estimation and imputation in Probabilistic Principal Component Analysis with Missing Not At Random data
|
2019
|
Aude Sportisse
Claire Boyer
Julie Josse
|
+
|
Nonparametric imputation by data depth
|
2019
|
Pavlo Mozharovskyi
Julie Josse
François Husson
|
+
|
Doubly robust treatment effect estimation with missing attributes
|
2019
|
Imke Mayer
Erik Sverdrup
Tobias Gauss
Jean-Denis Moyer
Stefan Wager
Julie Josse
|
+
|
Nonparametric Imputation by Data Depth
|
2019
|
Pavlo Mozharovskyi
Julie Josse
François Husson
|
+
|
misaem: Linear Regression and Logistic Regression with Missing Covariates
|
2018
|
Wei Jiang
Julie Josse
|
+
|
Stochastic Approximation EM for Logistic Regression with Missing Values
|
2018
|
Wei Jiang
Julie Josse
Marc Lavielle
|
+
PDF
Chat
|
Introduction to the Special Section on Missing Data
|
2018
|
Julie Josse
Jerome P. Reiter
|
+
|
Low-rank Interaction with Sparse Additive Effects Model for Large Data Frames
|
2018
|
GeneviĂšve Robin
Hoi-To Wai
Julie Josse
Olga Klopp
Ăric Moulines
|
+
|
Analysis of imputation bias for feature selection with missing data.
|
2018
|
Borja Seijo-Pardo
Amparo AlonsoâBetanzos
Kristin P. Bennett
VerĂłnica BolĂłnâCanedo
Isabelle Guyon
Julie Josse
Mehreen Saeed
|
+
|
Logistic Regression with Missing Covariates -- Parameter Estimation, Model Selection and Prediction within a Joint-Modeling Framework
|
2018
|
Wei Jiang
Julie Josse
Marc Lavielle
|
+
|
Main effects and interactions in mixed and incomplete data frames
|
2018
|
Geneviéve Robin
Olga Klopp
Julie Josse
Ăric Moulines
Robert Tibshirani
|
+
|
Imputation of mixed data with multilevel singular value decomposition
|
2018
|
François Husson
Julie Josse
Balasubramanian Narasimhan
Geneviéve Robin
|
+
|
Discussion of â50 Years of Data Scienceâ
|
2017
|
Susan Holmes
Julie Josse
|
+
PDF
Chat
|
Low-rank Interaction Contingency Tables
|
2017
|
Geneviéve Robin
Julie Josse
Ăric Moulines
Sylvain Sardy
|
+
PDF
Chat
|
Bayesian Dimensionality Reduction With PCA Using Penalized Semi-Integrated Likelihood
|
2017
|
Piotr Sobczyk
MaĆgorzata Bogdan
Julie Josse
|
+
|
Some discussions on the Read Paper "Beyond subjective and objective in statistics" by A. Gelman and C. Hennig
|
2017
|
Christian P. Robert
Gilles Celeux
Jack Jewson
Julie Josse
JeanâMichel Marin
Christian P. Robert
|
+
|
Empirical Bayes approaches to PageRank type algorithms for rating scientific journals
|
2017
|
JeanâLouis Foulley
Gilles Celeux
Julie Josse
|
+
|
Low-rank model with covariates for count data analysis
|
2017
|
GeneviĂšve Robin
Julie Josse
Ăric Moulines
Sylvain Sardy
|
+
|
Nonparametric imputation by data depth
|
2017
|
Pavlo Mozharovskyi
Julie Josse
François Husson
|
+
PDF
Chat
|
MIMCA: multiple imputation for categorical variables with multiple correspondence analysis
|
2016
|
Vincent Audigier
François Husson
Julie Josse
|
+
|
denoiseR: A Package for Low Rank Matrix Estimation
|
2016
|
Julie Josse
Sylvain Sardy
Stefan Wager
|
+
|
Multinomial Multiple Correspondence Analysis
|
2016
|
Patrick J. F. Groenen
Julie Josse
|
+
|
<b>missMDA</b>: A Package for Handling Missing Values in Multivariate Data Analysis
|
2016
|
Julie Josse
François Husson
|
+
PDF
Chat
|
Measuring multivariate association and beyond
|
2016
|
Julie Josse
Susan Holmes
|
+
|
Multiple Correspondence Analysis & the Multilogit Bilinear Model
|
2016
|
William Fithian
Julie Josse
|
+
|
Bootstrap-based regularization for low-rank matrix estimation
|
2016
|
Julie Josse
Stefan Wager
|
+
|
Bayesian dimensionality reduction with PCA using penalized semi-integrated likelihood
|
2016
|
Piotr Sobczyk
MaĆgorzata Bogdan
Julie Josse
|
+
PDF
Chat
|
Multiple imputation for continuous variables using a Bayesian principal component analysis
|
2015
|
Vincent Audigier
François Husson
Julie Josse
|
+
PDF
Chat
|
Confidence Areas for Fixed-Effects PCA
|
2015
|
Julie Josse
Stefan Wager
François Husson
|
+
|
MIMCA: Multiple imputation for categorical variables with multiple correspondence analysis
|
2015
|
Vincent Audigier
François Husson
Julie Josse
|
+
PDF
Chat
|
Adaptive shrinkage of singular values
|
2015
|
Julie Josse
Sylvain Sardy
|
+
|
Stable Autoencoding: A Flexible Framework for Regularized Low-rank Matrix Estimation
|
2015
|
Julie Josse
Stefan Wager
|
+
|
MIMCA: Multiple imputation for categorical variables with multiple correspondence analysis
|
2015
|
Vincent Audigier
François Husson
Julie Josse
|
+
|
A principal component method to impute missing values for mixed data
|
2014
|
Vincent Audigier
François Husson
Julie Josse
|
+
|
Principal component analysis with missing values: a comparative survey of methods
|
2014
|
Stéphane Dray
Julie Josse
|
+
|
Bootstrap-Based Regularization for Low-Rank Matrix Estimation
|
2014
|
Julie Josse
Stefan Wager
|
+
|
Stable Autoencoding: A Flexible Framework for Regularized Low-Rank Matrix Estimation
|
2014
|
Julie Josse
Stefan Wager
|
+
|
Confidence Areas for Fixed-Effects PCA
|
2014
|
Julie Josse
Stefan Wager
François Husson
|
+
|
Multiple imputation for continuous variables using a Bayesian principal component analysis
|
2014
|
Vincent Audigier
François Husson
Julie Josse
|
+
|
Multiple imputation for continuous variables using a Bayesian principal component analysis
|
2014
|
Vincent Audigier
François Husson
Julie Josse
|
+
|
Confidence Areas for Fixed-Effects PCA
|
2014
|
Julie Josse
Stefan Wager
François Husson
|
+
PDF
Chat
|
Regularised PCA to denoise and visualise data
|
2013
|
Marie Verbanck
Julie Josse
François Husson
|
+
|
Selecting thresholding and shrinking parameters with generalized SURE for low rank matrix estimation
|
2013
|
Julie Josse
Sylvain Sardy
|
+
|
Adaptive Shrinkage of singular values
|
2013
|
Julie Josse
Sylvain Sardy
|
+
|
Measures of dependence between random vectors and tests of independence. Literature review
|
2013
|
Julie Josse
Susan Holmes
|
+
|
A principal components method to impute missing values for mixed data
|
2013
|
Vincent Audigier
François Husson
Julie Josse
|
+
|
Regularised PCA to denoise and visualise data
|
2013
|
Marie Verbanck
Julie Josse
François Husson
|
+
|
Measures of dependence between random vectors and tests of independence. Literature review
|
2013
|
Julie Josse
Susan Holmes
|
+
|
A principal components method to impute missing values for mixed data
|
2013
|
Vincent Audigier
François Husson
Julie Josse
|
+
|
Regularised PCA to denoise and visualise data
|
2013
|
Marie Verbanck
Julie Josse
François Husson
|
+
|
Adaptive Shrinkage of singular values
|
2013
|
Julie Josse
Sylvain Sardy
|
+
|
Handling missing values in exploratory multivariate data analysis methods
|
2012
|
Julie Josse
François Husson
|
+
|
Selecting the number of components in principal component analysis using cross-validation approximations
|
2011
|
Julie Josse
François Husson
|
+
|
Multiple imputation in principal component analysis
|
2011
|
Julie Josse
JĂ©rĂŽme PagĂšs
François Husson
|
+
|
Analyse de données avec R - Complémentarité des méthodes d'analyse factorielle et de classification
|
2010
|
François Husson
Julie Josse
JĂ©rĂŽme PagĂšs
|
+
|
Principal component methods - hierarchical clustering - partitional clustering: why would we need to choose for visualizing data?
|
2010
|
Julie Josse
|
+
|
Variabilité des dimensions en ACP : cas complet et incomplet
|
2010
|
Julie Josse
François Husson
|
+
|
<b>FactoMineR</b>: An<i>R</i>Package for Multivariate Analysis
|
2008
|
SĂ©bastien LĂȘ
Julie Josse
François Husson
|