Shobha Venkataraman

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ The numerical treatment of a single nonlinear equation 1970 A. S. Householder
1
+ Anderson Acceleration for Fixed-Point Iterations 2011 Homer F. Walker
Peng Ni
1
+ PDF Chat A class of methods for solving nonlinear simultaneous equations 1965 C. G. Broyden
1
+ Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias 1965 Stanley L. Warner
1
+ PDF Chat Iterative Procedures for Nonlinear Integral Equations 1965 Donald G. Anderson
1
+ Poisoning Attacks against Support Vector Machines 2012 Battista Biggio
Blaine Nelson
Pavel Laskov
1
+ Share Conversion, Pseudorandom Secret-Sharing and Applications to Secure Computation 2005 Ronald Cramer
Ivan DamgÄrd
Yuval Ishai
1
+ Regression Shrinkage and Selection Via the Lasso 1996 Robert Tibshirani
1
+ PDF Chat Robust principal component analysis? 2011 Emmanuel J. CandĂšs
Xiaodong Li
Yi Ma
John Wright
1
+ PDF Chat The NumPy Array: A Structure for Efficient Numerical Computation 2011 Stéfan van der Walt
Steven C. Colbert
Gaël Varoquaux
1
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+ PDF Chat Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding 2016 Brendan O’Donoghue
Eric Chu
Neal Parikh
Stephen Boyd
1
+ Learning to Optimize 2016 Ke Li
Jitendra Malik
1
+ PDF Chat Deep Learning with Differential Privacy 2016 Martı́n Abadi
Andy Chu
Ian Goodfellow
H. Brendan McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
1
+ On Differentiating Parameterized Argmin and Argmax Problems with Application to Bi-level Optimization 2016 Stephen Jay Gould
Basura Fernando
Anoop Cherian
Peter Anderson
Rodrigo Santa Cruz
Edison Guo
1
+ Wav2Letter: an End-to-End ConvNet-based Speech Recognition System 2016 Ronan Collobert
Christian Puhrsch
Gabriel Synnaeve
1
+ Neural Architecture Search with Reinforcement Learning 2016 Barret Zoph
Quoc V. Le
1
+ Towards A Rigorous Science of Interpretable Machine Learning 2017 Finale Doshi‐Velez
Been Kim
1
+ Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks 2017 Chelsea Finn
Pieter Abbeel
Sergey Levine
1
+ Gazelle: A Low Latency Framework for Secure Neural Network Inference 2018 Chiraag Juvekar
Vinod Vaikuntanathan
Anantha P. Chandrakasan
1
+ A generic framework for privacy preserving deep learning 2018 Théo Ryffel
Andrew Trask
Morten Dahl
Bobby Wagner
Jason Mancuso
Daniel Rueckert
Jonathan Passerat‐Palmbach
1
+ TensorFlow Eager: A Multi-Stage, Python-Embedded DSL for Machine Learning 2019 Akshay Agrawal
Akshay Naresh Modi
Alexandre Passos
Allen Lavoie
Ashish Agarwal
Asim Shankar
Igor Ganichev
Josh Levenberg
Mingsheng Hong
Rajat Monga
1
+ Using learned optimizers to make models robust to input noise 2019 Luke Metz
Niru Maheswaranathan
Jonathon Shlens
Jascha Sohl‐Dickstein
Ekin D. Cubuk
1
+ Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation 2014 Kyunghyun Cho
Bart van Merriënboer
Çaǧlar GĂŒlçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
1
+ Learning Combinatorial Optimization Algorithms over Graphs 2017 Hanjun Dai
Elias B. Khalil
Yuyu Zhang
Bistra Dilkina
Le Song
1
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
1
+ PDF Chat Meta-Learning With Differentiable Convex Optimization 2019 Kwonjoon Lee
Subhransu Maji
Avinash Ravichandran
Stefano Soatto
1
+ A Semismooth Newton Method for Fast, Generic Convex Programming 2017 Alnur Ali
Eric Wong
J. Zico Kolter
1
+ Attention is All you Need 2017 Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Ɓukasz Kaiser
Illia Polosukhin
1
+ Differentiable MPC for End-to-end Planning and Control 2018 Brandon Amos
Ivan Jimenez
Jacob Sacks
Byron Boots
J. Zico Kolter
1
+ Learning to learn by gradient descent by gradient descent 2016 Marcin Andrychowicz
Misha Denil
Sergio Luis SuĂĄrez GĂłmez
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
1
+ OptNet: differentiable optimization as a layer in neural networks 2017 Brandon Amos
J. Zico Kolter
1
+ Learning Latent Permutations with Gumbel-Sinkhorn Networks 2018 Gonzalo E. Mena
David Belanger
Scott W. Linderman
Jasper Snoek
1
+ Differentiable Convex Optimization Layers 2019 Akshay Agrawal
Brandon Amos
Shane Barratt
Stephen Boyd
Steven Diamond
J. Zico Kolter
1
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
1
+ PDF Chat Solution refinement at regular points of conic problems 2019 Enzo Busseti
Walaa M. Moursi
S. T. P. Boyd
1
+ Deep Equilibrium Models 2019 Shaojie Bai
J. Zico Kolter
Vladlen Koltun
1
+ Secure multiparty computations in floating-point arithmetic 2020 Chuan Guo
Awni Hannun
Brian Knott
Laurens van der Maaten
Mark Tygert
Ruiyu Zhu
1
+ Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning 2020 Harsh Chaudhari
Rahul Rachuri
Ajith Suresh
1
+ PDF Chat CrypTFlow: Secure TensorFlow Inference 2020 Nishant Kumar
Mayank Rathee
Nishanth Chandran
Divya Gupta
Aseem Rastogi
Rahul Sharma
1
+ Multiscale Deep Equilibrium Models 2020 Shaojie Bai
Vladlen Koltun
J. Zico Kolter
1
+ A Learning-boosted Quasi-Newton Method for AC Optimal Power Flow 2020 Kyri Baker
1
+ Hypersolvers: Toward Fast Continuous-Depth Models 2020 Michael Poli
Stefano Massaroli
Atsushi Yamashita
Hajime Asama
Jinkyoo Park
1
+ PDF Chat Machine learning for combinatorial optimization: A methodological tour d’horizon 2020 Yoshua Bengio
Andrea Lodi
Antoine Prouvost
1
+ Fourier Neural Operator for Parametric Partial Differential Equations 2020 Zongyi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
Kaushik Bhattacharya
Andrew M. Stuart
Anima Anandkumar
1
+ PDF Chat A Systematic Comparison of Encrypted Machine Learning Solutions for Image Classification 2020 Veneta Haralampieva
Daniel Rueckert
Jonathan Passerat‐Palmbach
1
+ PDF Chat Globally Convergent Type-I Anderson Acceleration for Nonsmooth Fixed-Point Iterations 2020 Junzi Zhang
Brendan O’Donoghue
Stephen Boyd
1
+ PDF Chat ASTRA 2019 Harsh Chaudhari
Ashish Choudhury
Arpita Patra
Ajith Suresh
1
+ BLAZE: Blazing Fast Privacy-Preserving Machine Learning 2020 Arpita Patra
Ajith Suresh
1
+ PDF Chat Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 2020 Sameer Wagh
Shruti Tople
Fabrice Benhamouda
Eyal Kushilevitz
Prateek Mittal
Tal Rabin
1