Sadeep Jayasumana

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat LatentCRF: Continuous CRF for Efficient Latent Diffusion 2024 Kanchana Ranasinghe
Sadeep Jayasumana
Andreas Veit
Ayan Chakrabarti
Daniel GlÀsner
Michael S. Ryoo
Srikumar Ramalingam
Sanjiv Kumar
+ PDF Chat Efficient Document Ranking with Learnable Late Interactions 2024 Ziwei Ji
Himanshu Jain
Andreas Veit
Sashank J. Reddi
Sadeep Jayasumana
Ankit Singh Rawat
Aditya Krishna Menon
Felix Yu
Sanjiv Kumar
+ Rethinking FID: Towards a Better Evaluation Metric for Image Generation 2024 Sadeep Jayasumana
Srikumar Ramalingam
Andreas Veit
Daniel GlÀsner
Ayan Chakrabarti
Sanjiv Kumar
+ EmbedDistill: A Geometric Knowledge Distillation for Information Retrieval 2023 Seungyeon Kim
Ankit Singh Rawat
Manzil Zaheer
Sadeep Jayasumana
Veeranjaneyulu Sadhanala
Wittawat Jitkrittum
Aditya Krishna Menon
Rob Fergus
Sanjiv Kumar
+ MarkovGen: Structured Prediction for Efficient Text-to-Image Generation 2023 Sadeep Jayasumana
Daniel GlÀsner
Srikumar Ramalingam
Andreas Veit
Ayan Chakrabarti
Sanjiv Kumar
+ When does mixup promote local linearity in learned representations? 2022 Arslan Chaudhry
Aditya Krishna Menon
Andreas Veit
Sadeep Jayasumana
Srikumar Ramalingam
Sanjiv Kumar
+ Disentangling Sampling and Labeling Bias for Learning in Large-Output Spaces 2021 Ankit Singh Rawat
Aditya Krishna Menon
Wittawat Jitkrittum
Sadeep Jayasumana
Felix X. Yu
Sashank J. Reddi
Sanjiv Kumar
+ Balancing Constraints and Submodularity in Data Subset Selection. 2021 Srikumar Ramalingam
Daniel GlÀsner
Kaushal Patel
Raviteja Vemulapalli
Sadeep Jayasumana
Sanjiv Kumar
+ Less is more: Selecting informative and diverse subsets with balancing constraints 2021 Srikumar Ramalingam
Daniel GlÀsner
Kaushal Patel
Raviteja Vemulapalli
Sadeep Jayasumana
Sanjiv Kumar
+ Disentangling Sampling and Labeling Bias for Learning in Large-Output Spaces 2021 Ankit Singh Rawat
Aditya Krishna Menon
Wittawat Jitkrittum
Sadeep Jayasumana
Felix X. Yu
Sashank J. Reddi
Sanjiv Kumar
+ Kernelized Classification in Deep Networks. 2020 Sadeep Jayasumana
Srikumar Ramalingam
Sanjiv Kumar
+ Long-tail learning via logit adjustment 2020 Aditya Krishna Menon
Sadeep Jayasumana
Ankit Singh Rawat
Himanshu Jain
Andreas Veit
Sanjiv Kumar
+ Long-tail learning via logit adjustment 2020 Aditya Krishna Menon
Sadeep Jayasumana
Ankit Singh Rawat
Himanshu Jain
Andreas Veit
Sanjiv Kumar
+ Kernelized Classification in Deep Networks 2020 Sadeep Jayasumana
Srikumar Ramalingam
Sanjiv Kumar
+ Bipartite Conditional Random Fields for Panoptic Segmentation 2019 Sadeep Jayasumana
Kanchana Ranasinghe
Mayuka Jayawardhana
Sahan Liyanaarachchi
Harsha Ranasinghe
+ PDF Chat Higher Order Conditional Random Fields in Deep Neural Networks 2016 Anurag Arnab
Sadeep Jayasumana
Shuai Zheng
Philip H. S. Torr
+ Prototypical Priors: From Improving Classification to Zero-Shot Learning 2015 Saumya Jetley
Bernardino Romera‐Paredes
Sadeep Jayasumana
Philip H. S. Torr
+ PDF Chat Conditional Random Fields as Recurrent Neural Networks 2015 Shuai Zheng
Sadeep Jayasumana
Bernardino Romera‐Paredes
Vibhav Vineet
Zhizhong Su
Dalong Du
Chang Huang
Philip H. S. Torr
+ Higher Order Potentials in End-to-End Trainable Conditional Random Fields 2015 Anurag Arnab
Sadeep Jayasumana
Shuai Zheng
Philip H. S. Torr
+ Higher Order Conditional Random Fields in Deep Neural Networks 2015 Anurag Arnab
Sadeep Jayasumana
Shuai Zheng
Philip H. S. Torr
+ Kernels on Riemannian Manifolds 2015 Sadeep Jayasumana
Richard Hartley
Mathieu Salzmann
+ PDF Chat Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels 2015 Sadeep Jayasumana
Richard Hartley
Mathieu Salzmann
Hongdong Li
Mehrtash Harandi
+ Prototypical Priors: From Improving Classification to Zero-Shot Learning 2015 Saumya Jetley
Bernardino Romera‐Paredes
Sadeep Jayasumana
Philip H. S. Torr
+ Prototypical Priors: From Improving Classification to Zero-Shot Learning 2015 Saumya Jetley
Bernardino Romera‐Paredes
Sadeep Jayasumana
Philip Torr
+ Higher Order Conditional Random Fields in Deep Neural Networks 2015 Anurag Arnab
Sadeep Jayasumana
Shuai Zheng
Philip Torr
+ Optimizing Over Radial Kernels on Compact Manifolds 2014 Sadeep Jayasumana
Richard Hartley
Mathieu Salzmann
Hongdong Li
Mehrtash Harandi
+ Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices 2014 Sadeep Jayasumana
Richard Hartley
Mathieu Salzmann
Hongdong Li
Mehrtash Harandi
+ A Framework for Shape Analysis via Hilbert Space Embedding 2014 Sadeep Jayasumana
Mathieu Salzmann
Hongdong Li
Mehrtash Harandi
+ PDF Chat Optimizing over Radial Kernels on Compact Manifolds 2014 Sadeep Jayasumana
Richard Hartley
Mathieu Salzmann
Hongdong Li
Mehrtash Harandi
+ Expanding the Family of Grassmannian Kernels: An Embedding Perspective 2014 Mehrtash Harandi
Mathieu Salzmann
Sadeep Jayasumana
Richard Hartley
Hongdong Li
+ Optimizing Over Radial Kernels on Compact Manifolds 2014 Sadeep Jayasumana
Richard Hartley
Mathieu Salzmann
Hongdong Li
Mehrtash Harandi
+ Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices 2014 Sadeep Jayasumana
Richard Hartley
Mathieu Salzmann
Hongdong Li
Mehrtash Harandi
+ A Framework for Shape Analysis via Hilbert Space Embedding 2014 Sadeep Jayasumana
Mathieu Salzmann
Hongdong Li
Mehrtash Harandi
+ PDF Chat A Framework for Shape Analysis via Hilbert Space Embedding 2013 Sadeep Jayasumana
Mathieu Salzmann
Hongdong Li
Mehrtash Harandi
+ PDF Chat Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices 2013 Sadeep Jayasumana
Richard Hartley
Mathieu Salzmann
Hongdong Li
Mehrtash Harandi
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Harmonic Analysis on Semigroups 1984 Christian Berg
Jens Peter Christensen
Paul Ressel
10
+ PDF Chat Convolutional feature masking for joint object and stuff segmentation 2015 Jifeng Dai
Kaiming He
Jian Sun
5
+ PDF Chat Metric spaces and positive definite functions 1938 I. J. Schoenberg
5
+ Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials 2012 Philipp KrĂ€henbĂŒhl
Vladlen Koltun
5
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
5
+ PDF Chat Fully convolutional networks for semantic segmentation 2015 Jonathan Long
Evan Shelhamer
Trevor Darrell
5
+ PDF Chat Shape Manifolds, Procrustean Metrics, and Complex Projective Spaces 1984 David G. Kendall
4
+ PDF Chat Learning Graphical Model Parameters with Approximate Marginal Inference 2013 Justin Domke
4
+ Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour 2017 Priya Goyal
Piotr DollĂĄr
Ross Girshick
Pieter Noordhuis
Lukasz Wesolowski
Aapo Kyrola
Andrew Tulloch
Yangqing Jia
Kaiming He
4
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
4
+ PDF Chat Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation 2016 Guosheng Lin
Chunhua Shen
Anton van den Hengel
Ian Reid
4
+ PDF Chat BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation 2015 Jifeng Dai
Kaiming He
Jian Sun
3
+ Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs 2014 Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Murphy
Alan Yuille
3
+ PDF Chat Semi-intrinsic Mean Shift on Riemannian Manifolds 2012 Rui Caseiro
JoĂŁo F. Henriques
Pedro Martins
Jorge Batista
3
+ PDF Chat Sparse Coding and Dictionary Learning for Symmetric Positive Definite Matrices: A Kernel Approach 2012 Mehrtash Harandi
Conrad Sanderson
Richard Hartley
Brian C. Lovell
3
+ PDF Chat Deformable part models are convolutional neural networks 2015 Ross Girshick
Forrest Iandola
Trevor Darrell
Jitendra Malik
3
+ PDF Chat Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices 2013 Sadeep Jayasumana
Richard Hartley
Mathieu Salzmann
Hongdong Li
Mehrtash Harandi
3
+ Decoupling Representation and Classifier for Long-Tailed Recognition 2019 Bingyi Kang
Saining Xie
Marcus Rohrbach
Zhicheng Yan
Albert Gordo
Jiashi Feng
Yannis Kalantidis
3
+ PDF Chat SMOTE: Synthetic Minority Over-sampling Technique 2002 Nitesh V. Chawla
Kevin W. Bowyer
Lawrence Hall
W. Philip Kegelmeyer
3
+ Clustering and dimensionality reduction on Riemannian manifolds 2008 Alvina Goh
René Vidal
3
+ Multi-Scale Context Aggregation by Dilated Convolutions 2015 Fisher Yu
Vladlen Koltun
3
+ Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss 2019 Kaidi Cao
Colin Wei
Adrien Gaidon
Nikos Aréchiga
Tengyu Ma
3
+ PDF Chat Statistical Computations on Grassmann and Stiefel Manifolds for Image and Video-Based Recognition 2011 Pavan Turaga
Ashok Veeraraghavan
Anuj Srivastava
Rama Chellappa
3
+ Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging 2009 Ian L. Dryden
Alexey Koloydenko
Diwei Zhou
3
+ A sequential algorithm for training text classifiers 1994 David Lewis
William A. Gale
3
+ The Logit Model and Response-Based Samples 1989 Yu Xie
Charles F. Manski
3
+ Weakly- and Semi-Supervised Learning of a DCNN for Semantic Image Segmentation 2015 George Papandreou
Liang-Chieh Chen
Kevin Murphy
Alan Yuille
3
+ PDF Chat Large-Scale Long-Tailed Recognition in an Open World 2019 Ziwei Liu
Zhongqi Miao
Xiaohang Zhan
Jiayun Wang
Boqing Gong
Stella X. Yu
3
+ PDF Chat A Riemannian Framework for Tensor Computing 2005 Xavier Pennec
Pierre Fillard
Nicholas Ayache
3
+ PDF Chat A Framework for Shape Analysis via Hilbert Space Embedding 2013 Sadeep Jayasumana
Mathieu Salzmann
Hongdong Li
Mehrtash Harandi
3
+ PDF Chat A systematic study of the class imbalance problem in convolutional neural networks 2018 Mateusz Buda
Atsuto Maki
Maciej A. Mazurowski
3
+ Statistical shape analysis: clustering, learning, and testing 2005 Anuj Srivastava
S. K. Joshi
Washington Mio
Xiuwen Liu
3
+ Class-Balanced Loss Based on Effective Number of Samples 2019 Yin Cui
Menglin Jia
Tsung-Yi Lin
Yang Song
Serge Belongie
3
+ Positive definite matrices and the Symmetric Stein Divergence 2011 Suvrit Sra
3
+ PDF Chat Log‐Euclidean metrics for fast and simple calculus on diffusion tensors 2006 Vincent Arsigny
Pierre Fillard
Xavier Pennec
Nicholas Ayache
3
+ Distilling the Knowledge in a Neural Network 2015 Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
3
+ Learning with non-positive kernels 2004 Cheng Soon Ong
Xavier Mary
Stéphane Canu
Alexander J. Smola
3
+ Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation 2014 Jonathan Tompson
Arjun Jain
Yann LeCun
Christoph Bregler
3
+ The Devil is in the Tails: Fine-grained Classification in the Wild 2017 Grant Van Horn
Pietro Perona
3
+ PDF Chat Convexity, Classification, and Risk Bounds 2006 Peter L. Bartlett
Michael I. Jordan
Jon McAuliffe
2
+ PDF Chat Optimizing over Radial Kernels on Compact Manifolds 2014 Sadeep Jayasumana
Richard Hartley
Mathieu Salzmann
Hongdong Li
Mehrtash Harandi
2
+ Positive definite functions on spheres 1942 I. J. Schoenberg
2
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
2
+ Semantic Image Segmentation via Deep Parsing Network 2015 Ziwei Liu
Xiaoxiao Li
Ping Luo
Chen Change Loy
Xiaoou Tang
2
+ Is Pinocchio’s Nose Long or His Head Small? Learning Shape Distances for Classification 2007 Daniel Gill
Ya’acov Ritov
Gideon Dror
2
+ PDF Chat Principled Parallel Mean-Field Inference for Discrete Random Fields 2016 Pierre Baqué
Timur Bagautdinov
François Fleuret
Pascal Fua
2
+ Reviving Threshold-Moving: a Simple Plug-in Bagging Ensemble for Binary and Multiclass Imbalanced Data. 2016 Guillem Collell
DraĆŸen Prelec
Kaustubh R. Patil
2
+ The foundations of cost-sensitive learning 2001 Charles Elkan
2
+ Fully Connected Deep Structured Networks 2015 Alexander G. Schwing
Raquel Urtasun
2
+ Composite Binary Losses 2010 Mark D. Reid
Robert C. Williamson
2