Luke Metz

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat OpenAI o1 System Card 2024 OpenAI
NULL AUTHOR_ID
Aaron Jaech
Adam Tauman Kalai
Adam Lerer
Adam J. Richardson
Ahmed El-Kishky
A. M. Low
Alec Helyar
Aleksander Mądry
+ PDF Chat GPT-4o System Card 2024 OpenAI
NULL AUTHOR_ID
A. M. Hurst
Adam Lerer
Adam P. Goucher
Adam Perelman
Aditya Ramesh
Aidan Clark
AJ Ostrow
Akila Welihinda
+ PDF Chat Transformer-Based Learned Optimization 2023 Erik Gärtner
Luke Metz
Mykhaylo Andriluka
C. Daniel Freeman
Cristian Sminchisescu
+ Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies 2023 Oscar Li
J. Harrison
Jascha Sohl‐Dickstein
Virginia Smith
Luke Metz
+ Practical tradeoffs between memory, compute, and performance in learned optimizers 2022 Luke Metz
C. Daniel Freeman
J. Harrison
Niru Maheswaranathan
Jascha Sohl‐Dickstein
+ Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models 2022 Aarohi Srivastava
Abhinav Rastogi
Abhishek S. Rao
Abu Awal Shoeb
Abubakar Abid
Adam Fisch
Adam R. Brown
Adam Santoro
Aditya Gupta
Adrià Garriga-Alonso
+ A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases 2022 J. Harrison
Luke Metz
Jascha Sohl‐Dickstein
+ Discovered Policy Optimisation 2022 Chris Xiaoxuan Lu
Jakub Grudzien Kuba
Alistair Letcher
Luke Metz
Christian Schroeder de Witt
Jakob Foerster
+ VeLO: Training Versatile Learned Optimizers by Scaling Up 2022 Luke Metz
J. Harrison
C. Daniel Freeman
Amil Merchant
Lucas Beyer
James T. Bradbury
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
+ Transformer-Based Learned Optimization 2022 Erik Gärtner
Luke Metz
Mykhaylo Andriluka
C. Daniel Freeman
Cristian Sminchisescu
+ General-Purpose In-Context Learning by Meta-Learning Transformers 2022 Louis Kirsch
J. Harrison
Jascha Sohl‐Dickstein
Luke Metz
+ PDF Chat Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies 2021 Paul Vicol
Luke Metz
Jascha Sohl‐Dickstein
+ Gradients are Not All You Need 2021 Luke Metz
C. Daniel Freeman
Samuel S. Schoenholz
Tal Kachman
+ Training Learned Optimizers with Randomly Initialized Learned Optimizers. 2021 Luke Metz
C. Daniel Freeman
Niru Maheswaranathan
Jascha Sohl‐Dickstein
+ Learn2Hop: Learned Optimization on Rough Landscapes 2021 Amil Merchant
Luke Metz
Sam Schoenholz
Ekin D. Cubuk
+ Lyapunov Exponents for Diversity in Differentiable Games 2021 Jonathan Lorraine
Paul Vicol
Jack Parker-Holder
Tal Kachman
Luke Metz
Jakob Foerster
+ Gradients are Not All You Need 2021 Luke Metz
C. Daniel Freeman
Samuel S. Schoenholz
Tal Kachman
+ Training Learned Optimizers with Randomly Initialized Learned Optimizers 2021 Luke Metz
C. Daniel Freeman
Niru Maheswaranathan
Jascha Sohl‐Dickstein
+ Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies 2021 Paul Vicol
Luke Metz
Jascha Sohl‐Dickstein
+ Reverse engineering learned optimizers reveals known and novel mechanisms 2020 Niru Maheswaranathan
David Sussillo
Luke Metz
Ruoxi Sun
Jascha Sohl‐Dickstein
+ Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves. 2020 Luke Metz
Niru Maheswaranathan
C. Daniel Freeman
Ben Poole
Jascha Sohl‐Dickstein
+ Towards GAN Benchmarks Which Require Generalization. 2020 Ishaan Gulrajani
Colin Raffel
Luke Metz
+ Towards GAN Benchmarks Which Require Generalization 2020 Ishaan Gulrajani
Colin Raffel
Luke Metz
+ Using a thousand optimization tasks to learn hyperparameter search strategies 2020 Luke Metz
Niru Maheswaranathan
Ruoxi Sun
C. Daniel Freeman
Ben Poole
Jascha Sohl‐Dickstein
+ On Linear Identifiability of Learned Representations 2020 Geoffrey Roeder
Luke Metz
Diederik P. Kingma
+ Ridge Rider: Finding Diverse Solutions by Following Eigenvectors of the Hessian 2020 Jack Parker-Holder
Luke Metz
Cinjon Resnick
Hengyuan Hu
Adam Lerer
Alistair Letcher
Alex Peysakhovich
Aldo Pacchiano
Jakob Foerster
+ Ridge Rider: Finding Diverse Solutions by Following Eigenvectors of the Hessian 2020 Jack Parker-Holder
Luke Metz
Cinjon Resnick
Hengyuan Hu
Adam Lerer
Alistair Letcher
Alexander Peysakhovich
Aldo Pacchiano
Jakob Foerster
+ Parallel Training of Deep Networks with Local Updates 2020 Michael Laskin
Luke Metz
Seth Nabarro
Mark Saroufim
Badreddine Noune
Carlo Luschi
Jascha Sohl‐Dickstein
Pieter Abbeel
+ Reverse engineering learned optimizers reveals known and novel mechanisms 2020 Niru Maheswaranathan
David Sussillo
Luke Metz
Ruoxi Sun
Jascha Sohl‐Dickstein
+ Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves 2020 Luke Metz
Niru Maheswaranathan
C. Daniel Freeman
Ben Poole
Jascha Sohl‐Dickstein
+ Learning to Predict Without Looking Ahead: World Models Without Forward Prediction 2019 Daniel Freeman
David Ha
Luke Metz
+ Using learned optimizers to make models robust to input noise 2019 Luke Metz
Niru Maheswaranathan
Jonathon Shlens
Jascha Sohl‐Dickstein
Ekin D. Cubuk
+ Learning an Adaptive Learning Rate Schedule 2019 Zhen Xu
Andrew M. Dai
Jonas Kemp
Luke Metz
+ Learning to Predict Without Looking Ahead: World Models Without Forward Prediction 2019 C. Daniel Freeman
Luke Metz
David Ha
+ Learned optimizers that outperform SGD on wall-clock and test loss. 2018 Luke Metz
Niru Maheswaranathan
Jeremy Nixon
C. Daniel Freeman
Jascha Sohl‐Dickstein
+ Learned optimizers that outperform SGD on wall-clock and validation loss 2018 Luke Metz
Niru Maheswaranathan
Jeremy Nixon
C. Daniel Freeman
Jascha Sohl‐Dickstein
+ Learning Unsupervised Learning Rules 2018 Luke Metz
Niru Maheswaranathan
Brian Cheung
Jascha Sohl‐Dickstein
+ Adversarial Spheres. 2018 Justin Gilmer
Luke Metz
Fartash Faghri
Samuel S. Schoenholz
Maithra Raghu
Martin Wattenberg
Ian Goodfellow
+ Meta-Learning Update Rules for Unsupervised Representation Learning 2018 Luke Metz
Niru Maheswaranathan
Brian Cheung
Jascha Sohl‐Dickstein
+ Guided evolutionary strategies: Augmenting random search with surrogate gradients 2018 Niru Maheswaranathan
Luke Metz
George Tucker
Dami Choi
Jascha Sohl‐Dickstein
+ Understanding and correcting pathologies in the training of learned optimizers 2018 Luke Metz
Niru Maheswaranathan
Jeremy Nixon
C. Daniel Freeman
Jascha Sohl‐Dickstein
+ Adversarial Spheres 2018 Justin Gilmer
Luke Metz
Fartash Faghri
Samuel S. Schoenholz
Maithra Raghu
Martin Wattenberg
Ian Goodfellow
+ BEGAN: Boundary Equilibrium Generative Adversarial Networks 2017 David Berthelot
Thomas Schumm
Luke Metz
+ Discrete Sequential Prediction of Continuous Actions for Deep RL 2017 Luke Metz
Julian Ibarz
Navdeep Jaitly
James Davidson
+ BEGAN: Boundary Equilibrium Generative Adversarial Networks 2017 David Berthelot
Thomas Schumm
Luke Metz
+ Unrolled Generative Adversarial Networks 2016 Luke Metz
Ben Poole
David Pfau
Jascha Sohl‐Dickstein
+ Unrolled Generative Adversarial Networks 2016 Luke Metz
Ben Poole
David Pfau
Jascha Sohl‐Dickstein
+ Unrolled Generative Adversarial Networks 2016 Luke Metz
Ben Poole
David Pfau
Jascha Sohl‐Dickstein
+ Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks 2015 Alec Radford
Luke Metz
Soumith Chintala
+ Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks 2015 Alec Radford
Luke Metz
Soumith Chintala
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Learning to learn by gradient descent by gradient descent 2016 Marcin Andrychowicz
Misha Denil
Sergio Luis Suárez Gómez
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
12
+ Understanding Short-Horizon Bias in Stochastic Meta-Optimization 2018 Yuhuai Wu
Mengye Ren
Renjie Liao
Roger Grosse
8
+ Neural Optimizer Search with Reinforcement Learning 2017 Irwan Bello
Barret Zoph
Vijay Vasudevan
Quoc V. Le
8
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
7
+ Learning Gradient Descent: Better Generalization and Longer Horizons 2017 Kaifeng Lv
Shunhua Jiang
Jian Li
6
+ Practical Bayesian Optimization of Machine Learning Algorithms 2012 Jasper Snoek
Hugo Larochelle
Ryan P. Adams
6
+ On the difficulty of training Recurrent Neural Networks 2012 Razvan Pascanu
Tomáš Mikolov
Yoshua Bengio
5
+ Evolution Strategies as a Scalable Alternative to Reinforcement Learning 2017 Tim Salimans
Jonathan Ho
Xi Chen
Ilya Sutskever
5
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
5
+ PDF Chat No free lunch theorems for optimization 1997 David H. Wolpert
William G. Macready
5
+ Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks 2015 Alec Radford
Luke Metz
Soumith Chintala
5
+ Searching for Activation Functions 2017 Prajit Ramachandran
Barret Zoph
Quoc V. Le
4
+ Learning to Optimize 2016 Ke Li
Jitendra Malik
4
+ Evolved Policy Gradients 2018 Rein Houthooft
Richard Y. Chen
Phillip Isola
Bradly C. Stadie
Filip Wolski
Jonathan Ho
Pieter Abbeel
4
+ Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms 2017 Xiao Han
Kashif Rasul
Roland Vollgraf
4
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
4
+ PDF Chat Natural Evolution Strategies 2008 Daan Wierstra
Tom Schaul
Jan Peters
Juergen Schmidhuber
4
+ Attention is All you Need 2017 Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Łukasz Kaiser
Illia Polosukhin
4
+ Gradient-Based Optimization of Hyperparameters 2000 Yoshua Bengio
4
+ Using learned optimizers to make models robust to input noise 2019 Luke Metz
Niru Maheswaranathan
Jonathon Shlens
Jascha Sohl‐Dickstein
Ekin D. Cubuk
4
+ A method for unconstrained convex minimization problem with the rate of convergence o(1/k^2) 1983 Yurii Nesterov
4
+ The Loss Surfaces of Multilayer Networks 2015 Anna Choromanska
Mikael Henaff
Michaël Mathieu
Gérard Ben Arous
Yann LeCun
3
+ Unbiasing Truncated Backpropagation Through Time 2017 Yann Ollivier
Corentin Tallec
3
+ Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling 2014 Jun‐Young Chung
Çaǧlar Gülçehre
Kyunghyun Cho
Yoshua Bengio
3
+ Asynchronous Methods for Deep Reinforcement Learning 2016 Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Tim Harley
Timothy Lillicrap
David Silver
Koray Kavukcuoglu
3
+ On Empirical Comparisons of Optimizers for Deep Learning 2019 Dami Choi
Christopher J. Shallue
Zachary Nado
Jaehoon Lee
Chris J. Maddison
George E. Dahl
3
+ PDF Chat Learning Transferable Architectures for Scalable Image Recognition 2018 Barret Zoph
Vijay Vasudevan
Jonathon Shlens
Quoc V. Le
3
+ Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves. 2020 Luke Metz
Niru Maheswaranathan
C. Daniel Freeman
Ben Poole
Jascha Sohl‐Dickstein
3
+ Adversarially Learned Inference 2016 Vincent Dumoulin
Ishmael Belghazi
Ben Poole
Olivier Mastropietro
Alex Lamb
Martín Arjovsky
Aaron Courville
3
+ Learning to Optimize Neural Nets 2017 Ke Li
Jitendra Malik
3
+ Matching networks for one shot learning 2016 Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
3
+ PDF Chat Array programming with NumPy 2020 C. R. Harris
K. Jarrod Millman
Stéfan van der Walt
Ralf Gommers
Pauli Virtanen
David Cournapeau
Eric Wieser
Julian Taylor
Sebastian Berg
Nathaniel J. Smith
3
+ Learned Optimizers that Scale and Generalize 2017 Olga Wichrowska
Niru Maheswaranathan
Matthew W. Hoffman
Sergio Gómez Colmenarejo
Misha Denil
Nando de Freitas
Jascha Sohl‐Dickstein
3
+ Trust Region Policy Optimization 2015 John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
3
+ One Billion Word Benchmark for Measuring Progress in Statistical Language Modeling 2013 Ciprian Chelba
Tomáš Mikolov
Mike Schuster
Qi Ge
Thorsten Brants
Phillipp Koehn
Tony Robinson
3
+ PDF Chat Identity Mappings in Deep Residual Networks 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
3
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
3
+ Review papers : The statistical basis of meta-analysis 1993 JL Fleiss
3
+ Pixel Recurrent Neural Networks 2016 Aäron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
3
+ PDF Chat Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles 2016 Mehdi Noroozi
Paolo Favaro
3
+ Random gradient-free minimization of convex functions 2011 Yurii Nesterov
3
+ Structured Evolution with Compact Architectures for Scalable Policy Optimization 2018 Krzysztof Choromański
Mark Rowland
Vikas Sindhwani
Richard E. Turner
Adrian Weller
2
+ Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour 2017 Priya Goyal
Piotr Dollár
Ross Girshick
Pieter Noordhuis
Lukasz Wesolowski
Aapo Kyrola
Andrew Tulloch
Yangqing Jia
Kaiming He
2
+ Online Learning Rate Adaptation with Hypergradient Descent 2017 Atılım Güneş Baydin
Robert Cornish
David Martínez-Rubio
Mark Schmidt
Frank Wood
2
+ Prototypical Networks for Few-shot Learning 2017 Jake Snell
Kevin Swersky
Richard S. Zemel
2
+ Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks 2017 Chelsea Finn
Pieter Abbeel
Sergey Levine
2
+ Emergence of Locomotion Behaviours in Rich Environments 2017 Nicolas Heess
Dhruva Tb
Sriram Srinivasan
Jay Lemmon
Josh Merel
Greg Wayne
Yuval Tassa
Tom Erez
Ziyu Wang
S. M. Ali Eslami
2
+ No More Pesky Learning Rates 2012 Tom Schaul
Sixin Zhang
Yann LeCun
2
+ Learning Unsupervised Learning Rules 2018 Luke Metz
Niru Maheswaranathan
Brian Cheung
Jascha Sohl‐Dickstein
2
+ Energy-based Generative Adversarial Network 2016 Junbo Zhao
Michaël Mathieu
Yann LeCun
2