Seunggeun Lee

Follow

Generating author description...

All published works
Action Title Year Authors
+ To weight or not to weight? The effect of selection bias in 3 large electronic health record-linked biobanks and recommendations for practice 2024 Maxwell Salvatore
Ritoban Kundu
Xu Shi
Christopher R. Friese
Seunggeun Lee
Lars G. Fritsche
Alison M. Mondul
David A. Hanauer
Celeste Leigh Pearce
Bhramar Mukherjee
+ PDF Chat To weight or not to weight? Studying the effect of selection bias in three large EHR-linked biobanks 2024 Maxwell Salvatore
Ritoban Kundu
Xu Shi
Christopher R. Friese
Seunggeun Lee
Lars G. Fritsche
Alison M. Mondul
David A. Hanauer
Celeste Leigh Pearce
Bhramar Mukherjee
+ PDF Chat The Clinical relevance of Polygenic Risk Scores to Type 2 Diabetes Mellitus in Korean Population 2023 Na Yeon Kim
Haekyung Lee
Se Hee Kim
Ye‐Jee Kim
Hyunsuk Lee
Junhyeong Lee
Soo Heon Kwak
Seunggeun Lee
+ Optimal test allocation strategy during the COVID-19 pandemic and beyond 2020 Jiacong Du
Lauren J. Beesley
Seunggeun Lee
Xiang Zhou
Walter Dempsey
Bhramar Mukherjee
+ PDF Chat An efficient and accurate frailty model approach for genome-wide survival association analysis controlling for population structure and relatedness in large-scale biobanks 2020 Rounak Dey
Wei Zhou
Tuomo Kiiskinen
Aki S. Havulinna
Amanda Elliott
Juha Karjalainen
Mitja Kurki
Ashley Qin
Seunggeun Lee
Aarno Palotie
+ Asymptotic properties of principal component analysis and shrinkage-bias adjustment under the generalized spiked population model 2019 Rounak Dey
Seunggeun Lee
+ PDF Chat Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies 2018 Wei Zhou
Jonas B. Nielsen
Lars G. Fritsche
Rounak Dey
Maiken E. Gabrielsen
Brooke N. Wolford
Jonathon LeFaive
Peter VandeHaar
Sarah A. Gagliano Taliun
Aliya Gifford
+ PDF Chat Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies 2017 Wei Zhou
Jonas B. Nielsen
Lars G. Fritsche
Rounak Dey
Maiken E. Gabrielsen
Brooke N. Wolford
Jonathon LeFaive
Peter VandeHaar
Sarah A. Gagliano Taliun
Aliya Gifford
+ PDF Chat Robust Tests for Additive Gene-Environment Interaction in Case-Control Studies Using Gene-Environment Independence 2017 Gang Liu
Bhramar Mukherjee
Seunggeun Lee
Alice W. Lee
Anna H. Wu
Elisa V. Bandera
Allan Jensen
Mary Anne Rossing
Kirsten B. Moysich
Jenny Chang‐Claude
+ A fast and accurate algorithm to test for binary phenotypes and its application to PheWAS 2017 Rounak Dey
Ellen M. Schmidt
Gonçalo R. Abecasis
Seunggeun Lee
+ PDF Chat Set-Based Tests for the Gene–Environment Interaction in Longitudinal Studies 2016 Zihuai He
Min Zhang
Seunggeun Lee
Jennifer A. Smith
Sharon L.R. Kardia
V. Diez Roux
Bhramar Mukherjee
+ PDF Chat Convergence of sample eigenvalues, eigenvectors, and principal component scores for ultra-high dimensional data 2014 Seunggeun Lee
Fei Zou
Fred A. Wright
+ PDF Chat Convergence of sample eigenvalues, eigenvectors, and principal component scores for ultra-high dimensional data 2014 Seunggeun Lee
Fei Zou
Fred A. Wright
+ PDF Chat Convergence and prediction of principal component scores in high-dimensional settings 2010 Seunggeun Lee
Fei Zou
Fred A. Wright
+ PDF Chat Convergence and prediction of principal component scores in high-dimensional settings 2010 Seunggeun Lee
Fei Zou
Fred A. Wright
+ PDF Chat Comment on a Simple and Improved Correction for Population Stratification 2008 Seunggeun Lee
Patrick F. Sullivan
Fei Zou
Fred A. Wright
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Miscellanea. Saddlepoint approximations for distributions of quadratic forms in normal variables 1999 Diego Kuonen
4
+ Approximate Inference in Generalized Linear Mixed Models 1993 N. E. Breslow
David Clayton
3
+ Eigenvalues of large sample covariance matrices of spiked population models 2005 Jinho Baik
Jack W. Silverstein
3
+ ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL 2007 Debashis Paul
3
+ PDF Chat On the distribution of the largest eigenvalue in principal components analysis 2001 Iain M. Johnstone
3
+ DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES 1967 V A Marčenko
L. А. Pastur
3
+ PDF Chat Geometric Representation of High Dimension, Low Sample Size Data 2005 Peter A. Hall
J. S. Marron
Amnon Neeman
3
+ The high-dimension, low-sample-size geometric representation holds under mild conditions 2007 Jae Youn Ahn
J. S. Marron
Klaus MĂźller
Yueh‐Yun Chi
3
+ PDF Chat PCA consistency in high dimension, low sample size context 2009 Sungkyu Jung
J. S. Marron
3
+ PDF Chat Finite sample approximation results for principal component analysis: A matrix perturbation approach 2008 Boaz Nadler
2
+ A Structural Approach to Selection Bias 2004 Miguel A. HernĂĄn
Sonia Hernández–Dı́az
James M. Robins
2
+ PDF Chat Toward a Clearer Definition of Selection Bias When Estimating Causal Effects 2022 Haidong Lu
Stephen R. Cole
Chanelle J. Howe
Daniel Westreich
2
+ PDF Chat The Big Data Paradox in Clinical Practice 2022 Pavlos Msaouel
2
+ A Review of Generalizability and Transportability 2022 Irina Degtiar
Sherri Rose
2
+ PDF Chat Participation bias in the UK Biobank distorts genetic associations and downstream analyses 2023 Tabea Schoeler
Doug Speed
Eleonora Porcu
Nicola Pirastu
Jean‐Baptiste Pingault
ZoltĂĄn Kutalik
2
+ An Introduction to Multivariate Statistical Analysis 1986 Robb J. Muirhead
T. W. Anderson
2
+ Adjusting for selection bias due to missing data in electronic health records-based research 2021 Sarah B. Peskoe
David Arterburn
Karen J. Coleman
Lisa J. Herrinton
Michael J. Daniels
Sebastien Haneuse
2
+ A Practical Guide to Selection Bias in Instrumental Variable Analyses 2019 Sonja A. Swanson
2
+ PDF Chat Statistical paradises and paradoxes in big data (I): Law of large populations, big data paradox, and the 2016 US presidential election 2018 Xiao‐Li Meng
2
+ PDF Chat Contextualizing selection bias in Mendelian randomization: how bad is it likely to be? 2018 Apostolos Gkatzionis
Stephen Burgess
2
+ Principal Component Analysis 2005 Ian T. Jolliffe
2
+ Inverse probability weighting is an effective method to address selection bias during the analysis of high dimensional data 2021 Patrick M. Carry
Lauren A. Vanderlinden
Fran Dong
Teresa Buckner
Elizabeth Litkowski
Tim Vigers
Jill M. Norris
Katerina Kechris
2
+ PDF Chat Randomisation to protect against selection bias in healthcare trials 2011 Jan Odgaard‐Jensen
Gunn Elisabeth Vist
Antje Timmer
Regina Kunz
Elie A. Akl
Holger J. SchĂźnemann
Matthias Briel
Alain Nordmann
Silvia Pregno
Andrew D Oxman
2
+ PDF Chat Case studies in bias reduction and inference for electronic health record data with selection bias and phenotype misclassification 2022 Lauren J. Beesley
Bhramar Mukherjee
2
+ PDF Chat Polygenic risk score from a multi-ancestry GWAS uncovers susceptibility of heart failure 2021 Kuan-Han Wu
Nicholas J. Douville
Matthew C. Konerman
Michael R. Mathis
Scott L. Hummel
Brooke N. Wolford
Ida Surakka
Sarah E. Graham
Hyeon Joo
Jibril Hirbo
2
+ PDF Chat A framework for understanding selection bias in real-world healthcare data 2024 Ritoban Kundu
Xu Shi
Jean Morrison
Jessica Barrett
Bhramar Mukherjee
2
+ PDF Chat A General Framework for Considering Selection Bias in EHR-Based Studies: What Data are Observed and Why? 2016 Sebastien Haneuse
Michael J. Daniels
2
+ PDF Chat Computing the distribution of quadratic forms in normal variables 1961 J. P. Imhof
2
+ Approximate Interval Probabilities 1990 Ole E. Barndorff‐Nielsen
2
+ Collider scope: when selection bias can substantially influence observed associations 2017 Marcus R. Munafò
Kate Tilling
Amy E. Taylor
David M. Evans
George Davey Smith
2
+ PDF Chat Spectrum estimation for large dimensional covariance matrices using random matrix theory 2008 Noureddine El Karoui
2
+ PDF Chat Immortal Time Bias in Pharmacoepidemiology 2007 Samy Suissa
2
+ METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES, A REVIEW 2008 Zhidong Bai
2
+ PDF Chat Good practices for quantitative bias analysis 2014 Timothy L. Lash
Matthew P. Fox
Richard F. MacLehose
George Maldonado
Lawrence C. McCandless
Sander Greenland
2
+ PDF Chat Asymptotic Theory for Principal Component Analysis 1963 T. W. Anderson
2
+ Methods of conjugate gradients for solving linear systems 1952 Magnus R. Hestenes
Eduard Stiefel
2
+ PDF Chat Convergence and prediction of principal component scores in high-dimensional settings 2010 Seunggeun Lee
Fei Zou
Fred A. Wright
2
+ Preconditioned conjugate gradients for solving singular systems 1988 E.F. Kaasschieter
2
+ PDF Chat Saddlepoint Approximations in Statistics 1954 H. E. Daniels
2
+ Inference for Nonprobability Samples 2017 Michael R. Elliott
Richard Valliant
2
+ Using Propensity Score Weighting to Reduce Selection Bias in Large-Scale Data Sets 2018 Crystal D. Bishop
Walter L. Leite
Patricia Snyder
2
+ Approximate Inference in Generalized Linear Mixed Models 1993 N. E. Breslow
David Clayton
2
+ PDF Chat Doubly Robust Inference With Nonprobability Survey Samples 2019 Yilin Chen
Pengfei Li
Changbao Wu
2
+ Logistic disease incidence models and case-control studies 1979 Ross L. Prentice
Ronald Pyke
1
+ PDF Chat Convergence of sample eigenvalues, eigenvectors, and principal component scores for ultra-high dimensional data 2014 Seunggeun Lee
Fei Zou
Fred A. Wright
1
+ Nonparametric Estimation from Incomplete Observations 1992 Edward L. Kaplan
Paul Meier
1
+ PDF Chat Sample Size and Power Calculations for Additive Interactions 2012 Tyler J. VanderWeele
1
+ Convergence rates and asymptotic normality for series estimators 1997 Whitney K. Newey
1
+ Analysis of the Limiting Spectral Distribution of Large Dimensional Random Matrices 1995 Jack W. Silverstein
Sang Il Choi
1
+ Gene-centric gene–gene interaction: A model-based kernel machine method 2012 Shaoyu Li
Yuehua Cui
1