Projects
Reading
People
Chat
SU\G
(đž)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Hassan Rafique
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
PDF
Chat
Weakly-convexâconcave minâmax optimization: provable algorithms and applications in machine learning
2021
Hassan Rafique
Mingrui Liu
Qihang Lin
Tianbao Yang
+
Model-Agnostic Linear Competitors -- When Interpretable Models Compete and Collaborate with Black-Box Models
2019
Hassan Rafique
Tong Wang
Qihang Lin
+
Solving Weakly-Convex-Weakly-Concave Saddle-Point Problems as Successive Strongly Monotone Variational Inequalities
2018
Qihang Lin
Mingrui Liu
Hassan Rafique
Tianbao Yang
+
Solving Weakly-Convex-Weakly-Concave Saddle-Point Problems as Weakly-Monotone Variational Inequality
2018
Qihang Lin
Mingrui Liu
Hassan Rafique
Tianbao Yang
+
First-order Convergence Theory for Weakly-Convex-Weakly-Concave Min-max Problems
2018
Mingrui Liu
Hassan Rafique
Qihang Lin
Tianbao Yang
+
Non-Convex Min-Max Optimization: Provable Algorithms and Applications in Machine Learning
2018
Hassan Rafique
Mingrui Liu
Qihang Lin
Tianbao Yang
+
Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and Applications in Machine Learning
2018
Hassan Rafique
Mingrui Liu
Qihang Lin
Tianbao Yang
+
First-order Convergence Theory for Weakly-Convex-Weakly-Concave Min-max Problems
2018
Mingrui Liu
Hassan Rafique
Qihang Lin
Tianbao Yang
Common Coauthors
Coauthor
Papers Together
Qihang Lin
8
Tianbao Yang
7
Mingrui Liu
4
Mingrui Liu
3
Tong Wang
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
Certifying Some Distributional Robustness with Principled Adversarial Training
2017
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
3
+
PDF
Chat
Stochastic Model-Based Minimization of Weakly Convex Functions
2019
Damek Davis
Dmitriy Drusvyatskiy
3
+
Robust Stochastic Approximation Approach to Stochastic Programming
2009
Arkadi Nemirovski
Anatoli Juditsky
Guanghui Lan
Alexander Shapiro
3
+
Stochastic subgradient method converges at the rate $O(k^{-1/4})$ on weakly convex functions
2018
Damek Davis
Dmitriy Drusvyatskiy
3
+
PDF
Chat
Proximally Guided Stochastic Subgradient Method for Nonsmooth, Nonconvex Problems
2019
Damek Davis
Benjamin Grimmer
3
+
Stochastic Variance Reduction Methods for Saddle-Point Problems
2016
Palaniappan Balamurugan
Francis Bach
2
+
PDF
Chat
Accelerated gradient methods for nonconvex nonlinear and stochastic programming
2015
Saeed Ghadimi
Guanghui Lan
2
+
PDF
Chat
Stochastic First- and Zeroth-Order Methods for Nonconvex Stochastic Programming
2013
Saeed Ghadimi
Guanghui Lan
2
+
PDF
Chat
Efficiency of minimizing compositions of convex functions and smooth maps
2018
Dmitriy Drusvyatskiy
Courtney Paquette
2
+
Monotone Operators and the Proximal Point Algorithm
1976
R. T. Rockafellar
2
+
Fast incremental method for smooth nonconvex optimization
2016
Sashank J. Reddi
Suvrit Sra
BarnabĂĄs PĂłczos
Alex Smola
2
+
PDF
Chat
A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging
2010
Antonin Chambolle
Thomas Pock
2
+
PDF
Chat
Prox-Method with Rate of Convergence <i>O</i>(1/<i>t</i>) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems
2004
Arkadi Nemirovski
2
+
Very Deep Convolutional Networks for Large-Scale Image Recognition
2014
Karen Simonyan
Andrew Zisserman
2
+
Unified Convergence Analysis of Stochastic Momentum Methods for Convex and Non-convex Optimization
2016
Tianbao Yang
Qihang Lin
Zhe Li
2
+
Learning with Non-Convex Truncated Losses by SGD
2018
Yi Xu
Shenghuo Zhu
Sen Yang
Chi Zhang
Rong Jin
Tianbao Yang
2
+
On the Convergence Rate of Stochastic Mirror Descent for Nonsmooth Nonconvex Optimization
2018
Siqi Zhang
Niao He
2
+
Efficiency of minimizing compositions of convex functions and smooth maps
2016
Dmitriy Drusvyatskiy
Courtney Paquette
1
+
PDF
Chat
Extragradient Method with Variance Reduction for Stochastic Variational Inequalities
2017
Alfredo N. Iusem
A. Jofré
Roberto I. Oliveira
Philip Thompson
1
+
Learning with Average Top-k Loss
2017
Yanbo Fan
Siwei Lyu
Yiming Ying
Bao-Gang Hu
1
+
Towards Deep Learning Models Resistant to Adversarial Attacks
2017
Aleksander MÄ dry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
1
+
Interpretable and Explorable Approximations of Black Box Models
2017
Himabindu Lakkaraju
Ece Kamar
Rich Caruana
Jure Leskovec
1
+
Natasha: Faster Non-Convex Stochastic Optimization Via Strongly Non-Convex Parameter
2017
Zeyuan Allen-Zhu
1
+
Robust Optimization for Non-Convex Objectives
2017
Robert F. Chen
Brendan Lucier
Yaron Singer
Vasilis Syrgkanis
1
+
The proximal point method revisited
2017
Dmitriy Drusvyatskiy
1
+
On the Convergence of Adam and Beyond
2019
Sashank J. Reddi
Satyen Kale
Sanjiv Kumar
1
+
A Variational Inequality Perspective on Generative Adversarial Networks
2018
Gauthier Gidel
Hugo Berard
Gaëtan Vignoud
Pascal Vincent
Simon Lacoste-Julien
1
+
Complexity of finding near-stationary points of convex functions stochastically
2018
Damek Davis
Dmitriy Drusvyatskiy
1
+
Robust Optimization over Multiple Domains
2018
Qi Qian
Shenghuo Zhu
Jiasheng Tang
Rong Jin
Baigui Sun
Hao Li
1
+
Level-Set Methods for Finite-Sum Constrained Convex Optimization
2018
Qihang Lin
Runchao Ma
Tianbao Yang
1
+
SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation
2017
Bo Dai
Albert Shaw
Lihong Li
Lin Xiao
Niao He
Zhen Liu
Jianshu Chen
Le Song
1
+
Universal Stagewise Learning for Non-Convex Problems with Convergence on Averaged Solutions.
2018
Zaiyi Chen
Zhuoning Yuan
Jinfeng Yi
Bowen Zhou
Enhong Chen
Tianbao Yang
1
+
Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile
2018
Panayotis Mertikopoulos
Bruno Lecouat
Houssam Zenati
Chuan-Sheng Foo
Vijay Chandrasekhar
Georgios Piliouras
1
+
Non-Convex Min-Max Optimization: Provable Algorithms and Applications in Machine Learning
2018
Hassan Rafique
Mingrui Liu
Qihang Lin
Tianbao Yang
1
+
An Interpretable Model with Globally Consistent Explanations for Credit Risk
2018
Chaofan Chen
Kangcheng Lin
Cynthia Rudin
Yaron Shaposhnik
Sijia Wang
Tong Wang
1
+
Variance-based Regularization with Convex Objectives
2017
Hongseok Namkoong
John C. Duchi
1
+
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods
2019
Maher Nouiehed
Maziar Sanjabi
Tianjian Huang
Jason D. Lee
Meisam Razaviyayn
1
+
Efficient Algorithms for Smooth Minimax Optimization
2019
Kiran Koshy Thekumparampil
Prateek Jain
Praneeth Netrapalli
Sewoong Oh
1
+
PDF
Chat
Saddle-Point Dynamics: Conditions for Asymptotic Stability of Saddle Points
2017
Ashish Cherukuri
Bahman Gharesifard
Jorge Cortés
1
+
A Unified Approach to Interpreting Model Predictions
2017
Scott Lundberg
SuâIn Lee
1
+
PDF
Chat
Robust Optimization over Multiple Domains
2019
Qi Qian
Shenghuo Zhu
Jiasheng Tang
Rong Jin
Baigui Sun
Hao Li
1
+
An Alternative View: When Does SGD Escape Local Minima?
2018
Robert Kleinberg
Yuanzhi Li
Yuan Yang
1
+
Improved Techniques for Training GANs
2016
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
1
+
Universal Stagewise Learning for Non-Convex Problems with Convergence on Averaged Solutions
2018
Zaiyi Chen
Zhuoning Yuan
Jinfeng Yi
Bowen Zhou
Enhong Chen
Tianbao Yang
1
+
Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations
2017
Andrew Slavin Ross
Michael C. Hughes
Finale DoshiâVelez
1
+
Statistical consistency and asymptotic normality for high-dimensional robust $M$-estimators
2017
PoâLing Loh
1
+
Stochastic Variance Reduction for Nonconvex Optimization
2016
Sashank J. Reddi
Ahmed Hefny
Suvrit Sra
BarnabĂĄs PĂłczos
Alex Smola
1
+
The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization
2018
Constantinos Daskalakis
Ioannis Panageas
1
+
Adam: A Method for Stochastic Optimization
2014
Diederik P. Kingma
Jimmy Ba
1
+
Gradient descent GAN optimization is locally stable
2017
Vaishnavh Nagarajan
J. Zico Kolter
1