Hassan Rafique

Follow

Generating author description...

Common Coauthors
Coauthor Papers Together
Qihang Lin 8
Tianbao Yang 7
Mingrui Liu 4
Mingrui Liu 3
Tong Wang 1
Commonly Cited References
Action Title Year Authors # of times referenced
+ Certifying Some Distributional Robustness with Principled Adversarial Training 2017 Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
3
+ PDF Chat Stochastic Model-Based Minimization of Weakly Convex Functions 2019 Damek Davis
Dmitriy Drusvyatskiy
3
+ Robust Stochastic Approximation Approach to Stochastic Programming 2009 Arkadi Nemirovski
Anatoli Juditsky
Guanghui Lan
Alexander Shapiro
3
+ Stochastic subgradient method converges at the rate $O(k^{-1/4})$ on weakly convex functions 2018 Damek Davis
Dmitriy Drusvyatskiy
3
+ PDF Chat Proximally Guided Stochastic Subgradient Method for Nonsmooth, Nonconvex Problems 2019 Damek Davis
Benjamin Grimmer
3
+ Stochastic Variance Reduction Methods for Saddle-Point Problems 2016 Palaniappan Balamurugan
Francis Bach
2
+ PDF Chat Accelerated gradient methods for nonconvex nonlinear and stochastic programming 2015 Saeed Ghadimi
Guanghui Lan
2
+ PDF Chat Stochastic First- and Zeroth-Order Methods for Nonconvex Stochastic Programming 2013 Saeed Ghadimi
Guanghui Lan
2
+ PDF Chat Efficiency of minimizing compositions of convex functions and smooth maps 2018 Dmitriy Drusvyatskiy
Courtney Paquette
2
+ Monotone Operators and the Proximal Point Algorithm 1976 R. T. Rockafellar
2
+ Fast incremental method for smooth nonconvex optimization 2016 Sashank J. Reddi
Suvrit Sra
BarnabĂĄs PĂłczos
Alex Smola
2
+ PDF Chat A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging 2010 Antonin Chambolle
Thomas Pock
2
+ PDF Chat Prox-Method with Rate of Convergence <i>O</i>(1/<i>t</i>) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems 2004 Arkadi Nemirovski
2
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
2
+ Unified Convergence Analysis of Stochastic Momentum Methods for Convex and Non-convex Optimization 2016 Tianbao Yang
Qihang Lin
Zhe Li
2
+ Learning with Non-Convex Truncated Losses by SGD 2018 Yi Xu
Shenghuo Zhu
Sen Yang
Chi Zhang
Rong Jin
Tianbao Yang
2
+ On the Convergence Rate of Stochastic Mirror Descent for Nonsmooth Nonconvex Optimization 2018 Siqi Zhang
Niao He
2
+ Efficiency of minimizing compositions of convex functions and smooth maps 2016 Dmitriy Drusvyatskiy
Courtney Paquette
1
+ PDF Chat Extragradient Method with Variance Reduction for Stochastic Variational Inequalities 2017 Alfredo N. Iusem
A. Jofré
Roberto I. Oliveira
Philip Thompson
1
+ Learning with Average Top-k Loss 2017 Yanbo Fan
Siwei Lyu
Yiming Ying
Bao-Gang Hu
1
+ Towards Deep Learning Models Resistant to Adversarial Attacks 2017 Aleksander Mądry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
1
+ Interpretable and Explorable Approximations of Black Box Models 2017 Himabindu Lakkaraju
Ece Kamar
Rich Caruana
Jure Leskovec
1
+ Natasha: Faster Non-Convex Stochastic Optimization Via Strongly Non-Convex Parameter 2017 Zeyuan Allen-Zhu
1
+ Robust Optimization for Non-Convex Objectives 2017 Robert F. Chen
Brendan Lucier
Yaron Singer
Vasilis Syrgkanis
1
+ The proximal point method revisited 2017 Dmitriy Drusvyatskiy
1
+ On the Convergence of Adam and Beyond 2019 Sashank J. Reddi
Satyen Kale
Sanjiv Kumar
1
+ A Variational Inequality Perspective on Generative Adversarial Networks 2018 Gauthier Gidel
Hugo Berard
Gaëtan Vignoud
Pascal Vincent
Simon Lacoste-Julien
1
+ Complexity of finding near-stationary points of convex functions stochastically 2018 Damek Davis
Dmitriy Drusvyatskiy
1
+ Robust Optimization over Multiple Domains 2018 Qi Qian
Shenghuo Zhu
Jiasheng Tang
Rong Jin
Baigui Sun
Hao Li
1
+ Level-Set Methods for Finite-Sum Constrained Convex Optimization 2018 Qihang Lin
Runchao Ma
Tianbao Yang
1
+ SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation 2017 Bo Dai
Albert Shaw
Lihong Li
Lin Xiao
Niao He
Zhen Liu
Jianshu Chen
Le Song
1
+ Universal Stagewise Learning for Non-Convex Problems with Convergence on Averaged Solutions. 2018 Zaiyi Chen
Zhuoning Yuan
Jinfeng Yi
Bowen Zhou
Enhong Chen
Tianbao Yang
1
+ Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile 2018 Panayotis Mertikopoulos
Bruno Lecouat
Houssam Zenati
Chuan-Sheng Foo
Vijay Chandrasekhar
Georgios Piliouras
1
+ Non-Convex Min-Max Optimization: Provable Algorithms and Applications in Machine Learning 2018 Hassan Rafique
Mingrui Liu
Qihang Lin
Tianbao Yang
1
+ An Interpretable Model with Globally Consistent Explanations for Credit Risk 2018 Chaofan Chen
Kangcheng Lin
Cynthia Rudin
Yaron Shaposhnik
Sijia Wang
Tong Wang
1
+ Variance-based Regularization with Convex Objectives 2017 Hongseok Namkoong
John C. Duchi
1
+ Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods 2019 Maher Nouiehed
Maziar Sanjabi
Tianjian Huang
Jason D. Lee
Meisam Razaviyayn
1
+ Efficient Algorithms for Smooth Minimax Optimization 2019 Kiran Koshy Thekumparampil
Prateek Jain
Praneeth Netrapalli
Sewoong Oh
1
+ PDF Chat Saddle-Point Dynamics: Conditions for Asymptotic Stability of Saddle Points 2017 Ashish Cherukuri
Bahman Gharesifard
Jorge Cortés
1
+ A Unified Approach to Interpreting Model Predictions 2017 Scott Lundberg
Su‐In Lee
1
+ PDF Chat Robust Optimization over Multiple Domains 2019 Qi Qian
Shenghuo Zhu
Jiasheng Tang
Rong Jin
Baigui Sun
Hao Li
1
+ An Alternative View: When Does SGD Escape Local Minima? 2018 Robert Kleinberg
Yuanzhi Li
Yuan Yang
1
+ Improved Techniques for Training GANs 2016 Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
1
+ Universal Stagewise Learning for Non-Convex Problems with Convergence on Averaged Solutions 2018 Zaiyi Chen
Zhuoning Yuan
Jinfeng Yi
Bowen Zhou
Enhong Chen
Tianbao Yang
1
+ Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations 2017 Andrew Slavin Ross
Michael C. Hughes
Finale Doshi‐Velez
1
+ Statistical consistency and asymptotic normality for high-dimensional robust $M$-estimators 2017 Po‐Ling Loh
1
+ Stochastic Variance Reduction for Nonconvex Optimization 2016 Sashank J. Reddi
Ahmed Hefny
Suvrit Sra
BarnabĂĄs PĂłczos
Alex Smola
1
+ The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization 2018 Constantinos Daskalakis
Ioannis Panageas
1
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
1
+ Gradient descent GAN optimization is locally stable 2017 Vaishnavh Nagarajan
J. Zico Kolter
1