Jaak Simm

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Industry-Scale Orchestrated Federated Learning for Drug Discovery 2023 Martijn Oldenhof
Gergely Ács
Balázs Pejó
Ansgar Schuffenhauer
Nicholas Holway
Noé Sturm
Arne Dieckmann
Oliver Fortmeier
Eric Boniface
Clément Mayer
+ PDF Chat Self-labeling of Fully Mediating Representations by Graph Alignment 2022 Martijn Oldenhof
Ádám Arany
Yves Moreau
Jaak Simm
+ PDF Chat Expressive Graph Informer Networks 2022 Jaak Simm
Ádám Arany
Edward De Brouwer
Yves Moreau
+ SparseChem: Fast and accurate machine learning model for small molecules 2022 Ádám Arany
Jaak Simm
Martijn Oldenhof
Yves Moreau
+ Industry-Scale Orchestrated Federated Learning for Drug Discovery 2022 Martijn Oldenhof
Gergely Ács
Balázs Pejó
Ansgar Schuffenhauer
Nicholas Holway
Noé Sturm
Arne Dieckmann
Oliver Fortmeier
Eric Boniface
Clément Mayer
+ PDF Chat Two‐level preconditioning for Ridge Regression 2021 Joris Tavernier
Jaak Simm
Karl Meerbergen
Yves Moreau
+ PDF Chat ChemGrapher: Optical Graph Recognition of Chemical Compounds by Deep Learning 2020 Martijn Oldenhof
Ádám Arany
Yves Moreau
Jaak Simm
+ Multilevel Gibbs Sampling for Bayesian Regression 2020 Joris Tavernier
Jaak Simm
Ádám Arany
Karl Meerbergen
Yves Moreau
+ Graph Informer Networks for Molecules. 2019 Jaak Simm
Ádám Arany
Edward De Brouwer
Yves Moreau
+ Expressive Graph Informer Networks. 2019 Jaak Simm
Ádám Arany
Edward De Brouwer
Yves Moreau
+ SMURFF: a High-Performance Framework for Matrix Factorization 2019 Tom Vander Aa
Imen Chakroun
Thomas J. Ashby
Jaak Simm
Ádám Arany
Yves Moreau
Thanh Le Van
José Felipe Golib Dzib
Jörg K. Wegner
Vladimir Chupakhin
+ PDF Chat Fast semi-supervised discriminant analysis for binary classification of large data sets 2019 Joris Tavernier
Jaak Simm
Karl Meerbergen
Jörg K. Wegner
Hugo Ceulemans
Yves Moreau
+ GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series 2019 Edward De Brouwer
Jaak Simm
Ádám Arany
Yves Moreau
+ GRU-ODE-Bayes: Continuous Modeling of Sporadically-Observed Time Series 2019 Edward De Brouwer
Jaak Simm
Ádám Arany
Yves Moreau
+ SMURFF: a High-Performance Framework for Matrix Factorization 2019 Tom Vander Aa
Imen Chakroun
Thomas J. Ashby
Jaak Simm
Ádám Arany
Yves Moreau
Lê Vǎn Thành
José Felipe Golib Dzib
Jörg K. Wegner
Vladimir Chupakhin
+ Expressive Graph Informer Networks 2019 Jaak Simm
Ádám Arany
Edward De Brouwer
Yves Moreau
+ Multilevel preconditioning for Ridge Regression. 2018 Joris Tavernier
Jaak Simm
Karl Meerbergen
Yves Moreau
+ Deep Ensemble Tensor Factorization for Longitudinal Patient Trajectories Classification 2018 Edward De Brouwer
Jaak Simm
Ádám Arany
Yves Moreau
+ Two-level preconditioning for Ridge Regression 2018 Joris Tavernier
Jaak Simm
Karl Meerbergen
Yves Moreau
+ Highly Scalable Tensor Factorization for Prediction of Drug-Protein Interaction Type 2015 Ádám Arany
Jaak Simm
Pooya Zakeri
Tom Haber
Jörg K. Wegner
Vladimir Chupakhin
Hugo Ceulemans
Yves Moreau
+ Macau: Scalable Bayesian Multi-relational Factorization with Side Information using MCMC 2015 Jaak Simm
Ádám Arany
Pooya Zakeri
Tom Haber
Jörg K. Wegner
Vladimir Chupakhin
Hugo Ceulemans
Yves Moreau
+ Highly Scalable Tensor Factorization for Prediction of Drug-Protein Interaction Type 2015 Ádám Arany
Jaak Simm
Pooya Zakeri
Tom Haber
Jörg K. Wegner
Vladimir Chupakhin
Hugo Ceulemans
Yves Moreau
+ Easy Hyperparameter Search Using Optunity. 2014 Marc Claesen
Jaak Simm
Dušan Popović
Yves Moreau
Bart De Moor
+ Easy Hyperparameter Search Using Optunity 2014 Marc Claesen
Jaak Simm
Dušan Popović
Yves Moreau
Bart De Moor
+ PDF Chat Direct Importance Estimation with a Mixture of Probabilistic Principal Component Analyzers 2010 Makoto Yamada
Masashi Sugiyama
Gordon Wichern
Jaak Simm
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares 1982 Christopher C. Paige
Michael A. Saunders
3
+ PDF Chat Identity Mappings in Deep Residual Networks 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
3
+ Pattern Recognition and Machine Learning 2007 Christopher Bishop
3
+ PDF Chat Adaptive Graph Convolutional Neural Networks 2018 Ruoyu Li
Sheng Wang
Feiyun Zhu
Junzhou Huang
3
+ Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation 2014 Kyunghyun Cho
Bart van Merriënboer
Çaǧlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
3
+ PDF Chat A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method 1996 Michele Benzi
Carl D. Meyer
Miroslav Tůma
2
+ Subspace Preconditioned LSQR for Discrete Ill-Posed Problems 2003 M. Jacobsen
Per Christian Hansen
Michael A. Saunders
2
+ Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations 2010 Panayot S. Vassilevski
2
+ Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering 2016 Michaël Defferrard
Xavier Bresson
Pierre Vandergheynst
2
+ Attention is All you Need 2017 Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Łukasz Kaiser
Illia Polosukhin
2
+ RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism 2016 Edward Choi
Mohammad Taha Bahadori
Jimeng Sun
Joshua A. Kulas
Andy Schuetz
Walter F. Stewart
2
+ Scikit-learn: Machine Learning in Python 2012 Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
2
+ Incomplete Cholesky Factorizations with Limited Memory 1999 Chih‐Jen Lin
Jorge J. Morè
2
+ Cascadic multilevel methods for ill-posed problems 2009 Lothar Reichel
Andriy Shyshkov
2
+ PDF Chat Recurrent Neural Networks for Multivariate Time Series with Missing Values 2018 Zhengping Che
Sanjay Purushotham
Kyunghyun Cho
David Sontag
Yan Liu
2
+ PDF Chat MoleculeNet: a benchmark for molecular machine learning 2017 Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
Caleb Geniesse
Aneesh Pappu
Karl Leswing
Vijay S. Pande
2
+ PDF Chat Molecular graph convolutions: moving beyond fingerprints 2016 Steven Kearnes
Kevin McCloskey
Marc Berndl
Vijay S. Pande
Patrick Riley
2
+ Inductive Representation Learning on Large Graphs 2017 William L. Hamilton
Rex Ying
Jure Leskovec
2
+ A multigrid tutorial 1987 William L. Briggs
2
+ Multi-Scale Context Aggregation by Dilated Convolutions 2015 Fisher Yu
Vladlen Koltun
2
+ Convolutional Networks on Graphs for Learning Molecular Fingerprints 2015 David Duvenaud
Dougal Maclaurin
Jorge Aguilera‐Iparraguirre
Rafael Gómez‐Bombarelli
Timothy Hirzel
Alán Aspuru‐Guzik
Ryan P. Adams
2
+ PDF Chat Operator‐based interpolation for bootstrap algebraic multigrid 2010 Thomas A. Manteuffel
Steve McCormick
M. Park
J. Ruge
2
+ The Elements of Statistical Learning 2001 Trevor Hastie
J. Friedman
Robert Tibshirani
2
+ Flexible Conjugate Gradients 2000 Yvan Notay
2
+ Recursive Krylov‐based multigrid cycles 2007 Yvan Notay
Panayot S. Vassilevski
2
+ ILUT: A dual threshold incomplete LU factorization 1994 Yousef Saad
2
+ PDF Chat Molecular Structure Extraction from Documents Using Deep Learning 2019 Joshua Staker
Kyle Marshall
Robert Abel
Carolyn M. McQuaw
2
+ The Symmetric Eigenvalue Problem 1998 Beresford Ν. Parlett
1
+ PDF Chat Applied logistic regression 1990 David W. Hosmer
Stanley Lemeshow
1
+ Causal diagrams for empirical research 1995 Judea Pearl
1
+ Markov chain Monte Carlo Using an Approximation 2005 J. Andrés Christen
Colin Fox
1
+ PDF Chat Spike and slab variable selection: Frequentist and Bayesian strategies 2005 Hemant Ishwaran
J. Sunil Rao
1
+ Spectral Networks and Locally Connected Networks on Graphs 2013 Joan Bruna
Wojciech Zaremba
Arthur Szlam
Yann LeCun
1
+ The block conjugate gradient algorithm and related methods 1980 Dianne P. O’Leary
1
+ Improving predictive inference under covariate shift by weighting the log-likelihood function 2000 Hidetoshi Shimodaira
1
+ Adaptive Smoothed Aggregation ($\alpha$SA) Multigrid 2005 Marian Brezina
Robert D. Falgout
Scott MacLachlan
Thomas A. Manteuffel
Steve McCormick
J. Ruge
1
+ Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images 1984 Stuart Geman
Donald Geman
1
+ PDF Chat Accurate conjugate gradient methods for families of shifted systems 2004 Jasper van den Eshof
Gérard L. G. Sleijpen
1
+ PDF Chat Optimal Data-Dependent Hashing for Approximate Near Neighbors 2015 Alexandr Andoni
Ilya Razenshteyn
1
+ Continuous time bayesian networks 2007 Uri Nodelman
Christian R. Shelton
Daphne Koller
1
+ Direct and Indirect Effects 2001 Judea Pearl
1
+ Monte Carlo sampling methods using Markov chains and their applications 1970 W. Keith Hastings
1
+ Fast CG-Based Methods for Tikhonov--Phillips Regularization 1999 Andreas Frommer
Peter Maaß
1
+ PDF Chat Complexity analysis of accelerated MCMC methods for Bayesian inversion 2013 Viêt Hà Hòang
Christoph Schwab
Andrew M. Stuart
1
+ Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients 2011 K. A. Cliffe
Michael B. Giles
Robert Scheichl
Aretha L. Teckentrup
1
+ PDF Chat No free lunch theorems for optimization 1997 David H. Wolpert
William G. Macready
1
+ An empirical evaluation of Bayesian sampling with hybrid Monte Carlo for training neural network classifiers 1999 Dirk Husmeier
W.D. Penny
Stephen Roberts
1
+ PDF Chat A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow 2015 Tim Dodwell
C. Ketelsen
Robert Scheichl
Aretha L. Teckentrup
1
+ PDF Chat Multilevel Monte Carlo Path Simulation 2008 Michael B. Giles
1
+ PDF Chat Fast unfolding of communities in large networks 2008 Vincent D. Blondel
Jean‐Loup Guillaume
Renaud Lambiotte
Etienne Lefebvre
1