Andrew Hard

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Federated Learning for Mobile Keyboard Prediction 2018 Andrew Hard
Chloé Kiddon
Daniel Ramage
Françoise Beaufays
Hubert Eichner
K. Praveen Kumar Rao
Rajiv Mathews
Sean Augenstein
4
+ On the Convergence of FedAvg on Non-IID Data 2019 Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
3
+ Federated Learning with Non-IID Data 2018 Yue Zhao
Meng Li
Liangzhen Lai
Naveen Suda
Damon Civin
Vikas Chandra
3
+ Federated Learning for Emoji Prediction in a Mobile Keyboard 2019 Françoise Beaufays
K. Praveen Kumar Rao
Rajiv Mathews
Swaroop Ramaswamy
3
+ Measuring the Effects of Non-Identical Data Distribution for Federated Visual Classification 2019 Harry Chia-Hung Hsu
Hang Qi
Matthew A. Brown
3
+ Applied Federated Learning: Improving Google Keyboard Query Suggestions 2018 Timothy T. Yang
Galen Andrew
Hubert Eichner
Haicheng Sun
Wei Li
Nicholas Kong
Daniel Ramage
Françoise Beaufays
3
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
3
+ PDF Chat Deep Learning with Differential Privacy 2016 Martı́n Abadi
Andy Chu
Ian Goodfellow
H. Brendan McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
3
+ Practical Secure Aggregation for Federated Learning on User-Held Data 2016 Kallista Bonawitz
Vladimir Ivanov
Ben Kreuter
Antonio Marcedone
H. Brendan McMahan
Sarvar Patel
Daniel Ramage
Aaron Segal
Karn Seth
2
+ A Cascade Architecture for Keyword Spotting on Mobile Devices 2017 Alexander Gruenstein
Raziel Álvarez
Chris Thornton
Mohammadali Ghodrat
2
+ SCAFFOLD: Stochastic Controlled Averaging for Federated Learning 2019 Sai Praneeth Karimireddy
Satyen Kale
Mehryar Mohri
Sashank J. Reddi
Sebastian U. Stich
Ananda Theertha Suresh
2
+ PDF Chat Streaming End-to-end Speech Recognition for Mobile Devices 2019 Yanzhang He
Tara N. Sainath
Rohit Prabhavalkar
Ian McGraw
Raziel Álvarez
Ding Zhao
David Rybach
Anjuli Kannan
Yonghui Wu
Ruoming Pang
2
+ PDF Chat Federated Learning for Keyword Spotting 2019 David Leroy
Alice Coucke
Thibaut Lavril
Thibault Gisselbrecht
Joseph Dureau
2
+ Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning 2020 Sai Praneeth Karimireddy
Martin Jaggi
Satyen Kale
Mehryar Mohri
Sashank J. Reddi
Sebastian U. Stich
Ananda Theertha Suresh
2
+ LEAF: A Benchmark for Federated Settings 2018 Sebastian Caldas
Peter Wu
Li Tian
Jakub Konečný
H. Brendan McMahan
Virginia Smith
Ameet Talwalkar
2
+ PDF Chat Learning to Detect Keyword Parts and Whole by Smoothed Max Pooling 2020 Hyunjin Park
Patrick Violette
Niranjan Subrahmanya
2
+ Generative Models for Effective ML on Private, Decentralized Datasets. 2019 Sean Augenstein
H. Brendan McMahan
Daniel Ramage
Swaroop Ramaswamy
Peter Kairouz
Mingqing Chen
Rajiv Mathews
Blaise Agüera y Arcas
2
+ PDF Chat Specaugment on Large Scale Datasets 2020 Daniel Park
Yu Zhang
Chung‐Cheng Chiu
Youzheng Chen
Bo Li
William Chan
Quoc V. Le
Yonghui Wu
2
+ Learning Differentially Private Recurrent Language Models 2017 H. Brendan McMahan
Daniel Ramage
Kunal Talwar
Li Zhang
2
+ Distilling the Knowledge in a Neural Network 2015 Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
2
+ PDF Chat Lessons from Building Acoustic Models with a Million Hours of Speech 2019 Sree Hari Krishnan Parthasarathi
Nikko Ström
2
+ PDF Chat SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition 2019 Daniel Park
William Chan
Yu Zhang
Chung‐Cheng Chiu
Barret Zoph
Ekin D. Cubuk
Quoc V. Le
2
+ Training Keyword Spotting Models on Non-IID Data with Federated Learning 2020 Andrew Hard
Kurt Partridge
Cameron Nguyen
Niranjan Subrahmanya
Aishanee Shah
Pai Zhu
Ignacio López Moreno
Rajiv Mathews
2
+ Some methods of speeding up the convergence of iteration methods 1964 B. T. Polyak
2
+ Federated Learning of N-Gram Language Models 2019 Mingqing Chen
Ananda Theertha Suresh
Rajiv Mathews
Adeline Wong
Cyril Allauzen
Françoise Beaufays
Michael Riley
2
+ Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation 2014 Kyunghyun Cho
Bart van Merriënboer
Çaǧlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
1
+ Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks 2017 Chelsea Finn
Pieter Abbeel
Sergey Levine
1
+ Differentially Private Empirical Risk Minimization. 2011 Kamalika Chaudhuri
Claire Monteleoni
Anand D. Sarwate
1
+ Mobile Keyboard Input Decoding with Finite-State Transducers 2017 Tom Ouyang
David Rybach
Françoise Beaufays
Michael Riley
1
+ Distributed Learning for Cooperative Inference. 2017 Angelia Nedić
Alex Olshevsky
César A. Uribe
1
+ PDF Chat Deep Learning Face Attributes in the Wild 2015 Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
1
+ Federated Learning: Strategies for Improving Communication Efficiency 2016 Jakub Konečný
H. Brendan McMahan
Felix X. Yu
Peter Richtárik
Ananda Theertha Suresh
Dave Bacon
1
+ Federated Optimization: Distributed Machine Learning for On-Device Intelligence 2016 Jakub Konečný
H. Brendan McMahan
Daniel Ramage
Peter Richtárik
1
+ PDF Chat Fairness through awareness 2012 Cynthia Dwork
Moritz Hardt
Toniann Pitassi
Omer Reingold
Richard S. Zemel
1
+ Equality of Opportunity in Supervised Learning 2016 Moritz Hardt
Eric Price
Nathan Srebro
1
+ PDF Chat Parallel Restarted SGD with Faster Convergence and Less Communication: Demystifying Why Model Averaging Works for Deep Learning 2019 Hao Yu
Sen Yang
Shenghuo Zhu
1
+ AIDE: Fast and Communication Efficient Distributed Optimization 2016 Sashank J. Reddi
Jakub Konečný
Peter Richtárik
Barnabás Póczos
Alexander J. Smola
1
+ Local Privacy and Statistical Minimax Rates 2013 John C. Duchi
Michael I. Jordan
Martin J. Wainwright
1
+ PDF Chat LSTM: A Search Space Odyssey 2016 Klaus Greff
Rupesh K. Srivastava
Jan Koutník
Bas R. Steunebrink
Jürgen Schmidhuber
1
+ Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms 2018 Jianyu Wang
Gauri Joshi
1
+ Parallel SGD: When does averaging help? 2016 Jian Zhang
Christopher De
Ioannis Mitliagkas
Christopher Ré
1
+ Gradient methods for minimizing composite functions 2012 Yu. Nesterov
1
+ On First-Order Meta-Learning Algorithms. 2018 Alex Nichol
Joshua Achiam
John Schulman
1
+ Sparsified SGD with Memory 2018 Sebastian U. Stich
Jean-Baptiste Cordonnier
Martin Jaggi
1
+ Training Deep Nets with Sublinear Memory Cost 2016 Tianqi Chen
Bing Xu
Chiyuan Zhang
Carlos Guestrin
1
+ Reptile: a Scalable Metalearning Algorithm 2018 Alex Nichol
John Schulman
1
+ Revisiting Distributed Synchronous SGD 2017 Jianmin Chen
Rajat Monga
Samy Bengio
Rafał Józefowicz
1
+ A generic framework for privacy preserving deep learning 2018 Théo Ryffel
Andrew Trask
Morten Dahl
Bobby Wagner
Jason Mancuso
Daniel Rueckert
Jonathan Passerat‐Palmbach
1
+ Parallel training of DNNs with Natural Gradient and Parameter Averaging 2014 Daniel Povey
Xiaohui Zhang
Sanjeev Khudanpur
1
+ Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption 2017 Stephen Hardy
Wilko Henecka
Hamish Ivey-Law
Richard Nock
Giorgio Patrini
Guillaume Smith
Brian Thorne
1