+
PDF
Chat
|
Semi-Supervised One-Shot Imitation Learning
|
2024
|
Philipp Wu
Kourosh Hakhamaneshi
Yuqing Du
Igor Mordatch
Aravind Rajeswaran
Pieter Abbeel
|
+
PDF
Chat
|
MoDem-V2: Visuo-Motor World Models for Real-World Robot Manipulation
|
2024
|
Patrick Lancaster
Nicklas Hansen
Aravind Rajeswaran
Vikash Kumar
|
+
PDF
Chat
|
What Do We Learn from a Large-Scale Study of Pre-Trained Visual Representations in Sim and Real Environments?
|
2024
|
Sneha Silwal
Karmesh Yadav
Tingfan Wu
Jay Vakil
Arjun Majumdar
Sergio Arnaud
Claire Chen
Vincent-Pierre Berges
Dhruv Batra
Aravind Rajeswaran
|
+
PDF
Chat
|
From LLMs to Actions: Latent Codes as Bridges in Hierarchical Robot
Control
|
2024
|
Yide Shentu
Philipp Wu
Aravind Rajeswaran
Pieter Abbeel
|
+
PDF
Chat
|
Train Offline, Test Online: A Real Robot Learning Benchmark
|
2023
|
Gaoyue Zhou
Victoria Dean
Mohan Kumar Srirama
Aravind Rajeswaran
Jyothish Pari
Kyle Hatch
Aryan Jain
Tianhe Yu
Pieter Abbeel
Lerrel Pinto
|
+
PDF
Chat
|
Real World Offline Reinforcement Learning with Realistic Data Source
|
2023
|
Gaoyue Zhou
Liyiming Ke
Siddhartha S Srinivasa
Abhinav Gupta
Aravind Rajeswaran
Vikash Kumar
|
+
|
Where are we in the search for an Artificial Visual Cortex for Embodied Intelligence?
|
2023
|
Arjun Majumdar
Karmesh Yadav
Sergio Arnaud
Yecheng Jason Ma
Claire Chen
Sneha Silwal
Aryan Jain
Vincent-Pierre Berges
Pieter Abbeel
Jitendra Malik
|
+
|
Masked Trajectory Models for Prediction, Representation, and Control
|
2023
|
Philipp Wu
Arjun Majumdar
Kevin H. Stone
Yixin Lin
Igor Mordatch
Pieter Abbeel
Aravind Rajeswaran
|
+
|
Train Offline, Test Online: A Real Robot Learning Benchmark
|
2023
|
Gaoyue Zhou
Victoria Dean
Mohan Kumar Srirama
Aravind Rajeswaran
Jyothish Pari
Kyle Hatch
Aryan Jain
Tianhe Yu
Pieter Abbeel
Lerrel Pinto
|
+
|
MoDem-V2: Visuo-Motor World Models for Real-World Robot Manipulation
|
2023
|
Patrick Lancaster
Nicklas Hansen
Aravind Rajeswaran
Vikash Kumar
|
+
|
What do we learn from a large-scale study of pre-trained visual representations in sim and real environments?
|
2023
|
Sneha Silwal
Karmesh Yadav
Tingfan Wu
Jay Vakil
Arjun Majumdar
Sergio Arnaud
Claire Chen
Vincent-Pierre Berges
Dhruv Batra
Aravind Rajeswaran
|
+
|
RoboHive: A Unified Framework for Robot Learning
|
2023
|
Vikas Kumar
Rutav Shah
Gaoyue Zhou
Vincent Moens
Vittorio Caggiano
Jay Vakil
Abhishek Gupta
Aravind Rajeswaran
|
+
|
CIC: Contrastive Intrinsic Control for Unsupervised Skill Discovery
|
2022
|
Michael Laskin
Hao Liu
Xue Bin Peng
Denis Yarats
Aravind Rajeswaran
Pieter Abbeel
|
+
|
R3M: A Universal Visual Representation for Robot Manipulation
|
2022
|
Suraj Nair
Aravind Rajeswaran
Vikash Kumar
Chelsea Finn
Abhinav Gupta
|
+
|
The Unsurprising Effectiveness of Pre-Trained Vision Models for Control
|
2022
|
Simone Parisi
Aravind Rajeswaran
Senthil Purushwalkam
Abhinav Gupta
|
+
|
Can Foundation Models Perform Zero-Shot Task Specification For Robot Manipulation?
|
2022
|
Yuchen Cui
Scott Niekum
Abhinav Gupta
Vikas Kumar
Aravind Rajeswaran
|
+
|
Policy Architectures for Compositional Generalization in Control
|
2022
|
Allan Zhou
Vikash Kumar
Chelsea Finn
Aravind Rajeswaran
|
+
|
Real World Offline Reinforcement Learning with Realistic Data Source
|
2022
|
Gaoyue Zhou
Liyiming Ke
Siddhartha S Srinivasa
Abhinav Gupta
Aravind Rajeswaran
Vikas Kumar
|
+
|
CACTI: A Framework for Scalable Multi-Task Multi-Scene Visual Imitation Learning
|
2022
|
Zhao Mandi
Homanga Bharadhwaj
Vincent Moens
Shuran Song
Aravind Rajeswaran
Vikash Kumar
|
+
|
MoDem: Accelerating Visual Model-Based Reinforcement Learning with Demonstrations
|
2022
|
Nicklas Hansen
Yixin Lin
Hao Su
Xiaolong Wang
Vikash Kumar
Aravind Rajeswaran
|
+
|
On Pre-Training for Visuo-Motor Control: Revisiting a Learning-from-Scratch Baseline
|
2022
|
Nicklas Hansen
Zhecheng Yuan
Yanjie Ze
Tongzhou Mu
Aravind Rajeswaran
Hao Su
Huazhe Xu
Xiaolong Wang
|
+
|
Visual Adversarial Imitation Learning using Variational Models
|
2021
|
Rafael Rafailov
Tianhe Yu
Aravind Rajeswaran
Chelsea Finn
|
+
|
COMBO: Conservative Offline Model-Based Policy Optimization
|
2021
|
Tianhe Yu
Aviral Kumar
Rafael Rafailov
Aravind Rajeswaran
Sergey Levine
Chelsea Finn
|
+
|
Reinforcement Learning with Latent Flow
|
2021
|
Wenling Shang
Xiaofei Wang
Aravind Srinivas
Aravind Rajeswaran
Yang Gao
Pieter Abbeel
Michael Laskin
|
+
|
Behavioral Priors and Dynamics Models: Improving Performance and Domain Transfer in Offline RL
|
2021
|
Catherine Cang
Aravind Rajeswaran
Pieter Abbeel
Michael Laskin
|
+
|
Decision Transformer: Reinforcement Learning via Sequence Modeling
|
2021
|
Lili Chen
Kevin Lü
Aravind Rajeswaran
Kimin Lee
Aditya Grover
Michael Laskin
Pieter Abbeel
Aravind Srinivas
Igor Mordatch
|
+
|
COMBO: Conservative Offline Model-Based Policy Optimization
|
2021
|
Tianhe Yu
Aviral Kumar
Rafael Rafailov
Aravind Rajeswaran
Sergey Levine
Chelsea Finn
|
+
|
Reinforcement Learning with Latent Flow
|
2021
|
Wenling Shang
Xiaofei Wang
Aravind Rajeswaran
Aravind Srinivas
Yang Gao
Pieter Abbeel
Michael Laskin
|
+
|
Visual Adversarial Imitation Learning using Variational Models
|
2021
|
Rafael Rafailov
Tianhe Yu
Aravind Rajeswaran
Chelsea Finn
|
+
|
Offline Reinforcement Learning from Images with Latent Space Models
|
2020
|
Rafael Rafailov
Tianhe Yu
Aravind Rajeswaran
Chelsea Finn
|
+
|
Lyceum: An efficient and scalable ecosystem for robot learning
|
2020
|
Colin Summers
Kendall Lowrey
Aravind Rajeswaran
Siddhartha S Srinivasa
Emanuel Todorov
|
+
|
A Game Theoretic Framework for Model Based Reinforcement Learning
|
2020
|
Aravind Rajeswaran
Igor Mordatch
Vikash Kumar
|
+
|
MOReL : Model-Based Offline Reinforcement Learning
|
2020
|
Rahul Kidambi
Aravind Rajeswaran
Praneeth Netrapalli
Thorsten Joachims
|
+
|
Offline Reinforcement Learning from Images with Latent Space Models
|
2020
|
Rafael Rafailov
Tianhe Yu
Aravind Rajeswaran
Chelsea Finn
|
+
|
Lyceum: An efficient and scalable ecosystem for robot learning
|
2020
|
Colin Summers
Kendall Lowrey
Aravind Rajeswaran
Siddhartha S Srinivasa
Emanuel Todorov
|
+
PDF
Chat
|
Dexterous Manipulation with Deep Reinforcement Learning: Efficient, General, and Low-Cost
|
2019
|
Henry Zhu
Abhishek Gupta
Aravind Rajeswaran
Sergey Levine
Vikash Kumar
|
+
|
Online Meta-Learning
|
2019
|
Chelsea Finn
Aravind Rajeswaran
Sham M. Kakade
Sergey Levine
|
+
|
Meta-Learning with Implicit Gradients
|
2019
|
Aravind Rajeswaran
Chelsea Finn
Sham M. Kakade
Sergey Levine
|
+
|
Online Meta-Learning
|
2019
|
Chelsea Finn
Aravind Rajeswaran
Sham M. Kakade
Sergey Levine
|
+
|
Plan Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control
|
2018
|
Kendall Lowrey
Aravind Rajeswaran
Sham M. Kakade
Emanuel Todorov
Igor Mordatch
|
+
|
Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations
|
2018
|
Aravind Rajeswaran
Vikash Kumar
Abhishek Gupta
Giulia Vezzani
John Schulman
Emanuel Todorov
Sergey Levine
|
+
PDF
Chat
|
Reinforcement learning for non-prehensile manipulation: Transfer from simulation to physical system
|
2018
|
Kendall Lowrey
Svetoslav Kolev
Jeremy Dao
Aravind Rajeswaran
Emanuel Todorov
|
+
|
Reinforcement learning for non-prehensile manipulation: Transfer from simulation to physical system
|
2018
|
Kendall Lowrey
Svetoslav Kolev
Jeremy Dao
Aravind Rajeswaran
Emanuel Todorov
|
+
|
Variance Reduction for Policy Gradient with Action-Dependent Factorized Baselines
|
2018
|
Cathy Wu
Aravind Rajeswaran
Yan Duan
Vikash Kumar
Alexandre M. Bayen
Sham M. Kakade
Igor Mordatch
Pieter Abbeel
|
+
|
Variance Reduction for Policy Gradient with Action-Dependent Factorized Baselines
|
2018
|
Cathy Wu
Aravind Rajeswaran
Yan Duan
Vikash Kumar
Alexandre M. Bayen
Sham M. Kakade
Igor Mordatch
Pieter Abbeel
|
+
|
Dexterous Manipulation with Deep Reinforcement Learning: Efficient, General, and Low-Cost
|
2018
|
Henry Zhu
Abhishek Gupta
Aravind Rajeswaran
Sergey Levine
Vikash Kumar
|
+
|
Plan Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control
|
2018
|
Kendall Lowrey
Aravind Rajeswaran
Sham M. Kakade
Emanuel Todorov
Igor Mordatch
|
+
|
Reinforcement learning for non-prehensile manipulation: Transfer from simulation to physical system
|
2018
|
Kendall Lowrey
Svetoslav Kolev
Jeremy Dao
Aravind Rajeswaran
Emanuel Todorov
|
+
|
Divide-and-Conquer Reinforcement Learning
|
2017
|
Dibya Ghosh
Avi Singh
Aravind Rajeswaran
Vikash Kumar
Sergey Levine
|
+
|
Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations
|
2017
|
Aravind Rajeswaran
Vikash Kumar
Abhishek Gupta
John Schulman
Emanuel Todorov
Sergey Levine
|
+
PDF
Chat
|
A graph partitioning algorithm for leak detection in water distribution networks
|
2017
|
Aravind Rajeswaran
Sridharakumar Narasimhan
Shankar Narasimhan
|
+
|
Towards Generalization and Simplicity in Continuous Control
|
2017
|
Aravind Rajeswaran
Kendall Lowrey
Emanuel Todorov
Sham M. Kakade
|
+
|
Divide-and-Conquer Reinforcement Learning
|
2017
|
Dibya Ghosh
Avi Singh
Aravind Rajeswaran
Vikash Kumar
Sergey Levine
|
+
|
Towards Generalization and Simplicity in Continuous Control
|
2017
|
Aravind Rajeswaran
Kendall Lowrey
Emanuel Todorov
Sham M. Kakade
|
+
|
Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations
|
2017
|
Aravind Rajeswaran
Vikas Kumar
Abhishek Gupta
Giulia Vezzani
John Schulman
Emanuel Todorov
Sergey Levine
|
+
|
EPOpt: Learning Robust Neural Network Policies Using Model Ensembles
|
2016
|
Aravind Rajeswaran
Sarvjeet Ghotra
Balaraman Ravindran
Sergey Levine
|
+
|
EPOpt: Learning Robust Neural Network Policies Using Model Ensembles
|
2016
|
Aravind Rajeswaran
Sarvjeet Ghotra
Balaraman Ravindran
Sergey Levine
|
+
|
Identifying Topology of Power Distribution Networks Based on Smart Meter Data.
|
2016
|
Jayadev P. Satya
Nirav Bhatt
Ramkrishna Pasumarthy
Aravind Rajeswaran
|
+
PDF
Chat
|
A novel approach for phase identification in smart grids using Graph Theory and Principal Component Analysis
|
2016
|
Satya P. Jayadev
Aravind Rajeswaran
Nirav Bhatt
Ramkrishna Pasumarthy
|
+
|
A Graph Partitioning Algorithm for Leak Detection in Water Distribution Networks
|
2016
|
Aravind Rajeswaran
Sridharakumar Narasimhan
Shankar Narasimhan
|
+
|
Identifying Topology of Power Distribution Networks Based on Smart Meter Data
|
2016
|
Jayadev P Satya
Nirav Bhatt
Ramkrishna Pasumarthy
Aravind Rajeswaran
|
+
|
EPOpt: Learning Robust Neural Network Policies Using Model Ensembles
|
2016
|
Aravind Rajeswaran
Sarvjeet Ghotra
Balaraman Ravindran
Sergey Levine
|
+
|
A Graph Partitioning Algorithm for Leak Detection in Water Distribution Networks
|
2016
|
Aravind Rajeswaran
Sridharakumar Narasimhan
Shankar Narasimhan
|
+
|
A Novel Approach for Phase Identification in Smart Grids Using Graph Theory and Principal Component Analysis
|
2015
|
P Satya Jayadev
Aravind Rajeswaran
Nirav Bhatt
Ramkrishna Pasumarthy
|
+
|
A New Method for Reconstructing Network Topology from Flux Measurements.
|
2015
|
Aravind Rajeswaran
Shankar Narasimhan
|
+
|
Network Topology Identification using PCA and its Graph Theoretic Interpretations
|
2015
|
Aravind Rajeswaran
Shankar Narasimhan
|
+
|
A Novel Approach for Phase Identification in Smart Grids Using Graph Theory and Principal Component Analysis
|
2015
|
P Satya Jayadev
Aravind Rajeswaran
Nirav Bhatt
Ramkrishna Pasumarthy
|