Aravind Rajeswaran

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Semi-Supervised One-Shot Imitation Learning 2024 Philipp Wu
Kourosh Hakhamaneshi
Yuqing Du
Igor Mordatch
Aravind Rajeswaran
Pieter Abbeel
+ PDF Chat MoDem-V2: Visuo-Motor World Models for Real-World Robot Manipulation 2024 Patrick Lancaster
Nicklas Hansen
Aravind Rajeswaran
Vikash Kumar
+ PDF Chat What Do We Learn from a Large-Scale Study of Pre-Trained Visual Representations in Sim and Real Environments? 2024 Sneha Silwal
Karmesh Yadav
Tingfan Wu
Jay Vakil
Arjun Majumdar
Sergio Arnaud
Claire Chen
Vincent-Pierre Berges
Dhruv Batra
Aravind Rajeswaran
+ PDF Chat From LLMs to Actions: Latent Codes as Bridges in Hierarchical Robot Control 2024 Yide Shentu
Philipp Wu
Aravind Rajeswaran
Pieter Abbeel
+ PDF Chat Train Offline, Test Online: A Real Robot Learning Benchmark 2023 Gaoyue Zhou
Victoria Dean
Mohan Kumar Srirama
Aravind Rajeswaran
Jyothish Pari
Kyle Hatch
Aryan Jain
Tianhe Yu
Pieter Abbeel
Lerrel Pinto
+ PDF Chat Real World Offline Reinforcement Learning with Realistic Data Source 2023 Gaoyue Zhou
Liyiming Ke
Siddhartha S Srinivasa
Abhinav Gupta
Aravind Rajeswaran
Vikash Kumar
+ Where are we in the search for an Artificial Visual Cortex for Embodied Intelligence? 2023 Arjun Majumdar
Karmesh Yadav
Sergio Arnaud
Yecheng Jason Ma
Claire Chen
Sneha Silwal
Aryan Jain
Vincent-Pierre Berges
Pieter Abbeel
Jitendra Malik
+ Masked Trajectory Models for Prediction, Representation, and Control 2023 Philipp Wu
Arjun Majumdar
Kevin H. Stone
Yixin Lin
Igor Mordatch
Pieter Abbeel
Aravind Rajeswaran
+ Train Offline, Test Online: A Real Robot Learning Benchmark 2023 Gaoyue Zhou
Victoria Dean
Mohan Kumar Srirama
Aravind Rajeswaran
Jyothish Pari
Kyle Hatch
Aryan Jain
Tianhe Yu
Pieter Abbeel
Lerrel Pinto
+ MoDem-V2: Visuo-Motor World Models for Real-World Robot Manipulation 2023 Patrick Lancaster
Nicklas Hansen
Aravind Rajeswaran
Vikash Kumar
+ What do we learn from a large-scale study of pre-trained visual representations in sim and real environments? 2023 Sneha Silwal
Karmesh Yadav
Tingfan Wu
Jay Vakil
Arjun Majumdar
Sergio Arnaud
Claire Chen
Vincent-Pierre Berges
Dhruv Batra
Aravind Rajeswaran
+ RoboHive: A Unified Framework for Robot Learning 2023 Vikas Kumar
Rutav Shah
Gaoyue Zhou
Vincent Moens
Vittorio Caggiano
Jay Vakil
Abhishek Gupta
Aravind Rajeswaran
+ CIC: Contrastive Intrinsic Control for Unsupervised Skill Discovery 2022 Michael Laskin
Hao Liu
Xue Bin Peng
Denis Yarats
Aravind Rajeswaran
Pieter Abbeel
+ R3M: A Universal Visual Representation for Robot Manipulation 2022 Suraj Nair
Aravind Rajeswaran
Vikash Kumar
Chelsea Finn
Abhinav Gupta
+ The Unsurprising Effectiveness of Pre-Trained Vision Models for Control 2022 Simone Parisi
Aravind Rajeswaran
Senthil Purushwalkam
Abhinav Gupta
+ Can Foundation Models Perform Zero-Shot Task Specification For Robot Manipulation? 2022 Yuchen Cui
Scott Niekum
Abhinav Gupta
Vikas Kumar
Aravind Rajeswaran
+ Policy Architectures for Compositional Generalization in Control 2022 Allan Zhou
Vikash Kumar
Chelsea Finn
Aravind Rajeswaran
+ Real World Offline Reinforcement Learning with Realistic Data Source 2022 Gaoyue Zhou
Liyiming Ke
Siddhartha S Srinivasa
Abhinav Gupta
Aravind Rajeswaran
Vikas Kumar
+ CACTI: A Framework for Scalable Multi-Task Multi-Scene Visual Imitation Learning 2022 Zhao Mandi
Homanga Bharadhwaj
Vincent Moens
Shuran Song
Aravind Rajeswaran
Vikash Kumar
+ MoDem: Accelerating Visual Model-Based Reinforcement Learning with Demonstrations 2022 Nicklas Hansen
Yixin Lin
Hao Su
Xiaolong Wang
Vikash Kumar
Aravind Rajeswaran
+ On Pre-Training for Visuo-Motor Control: Revisiting a Learning-from-Scratch Baseline 2022 Nicklas Hansen
Zhecheng Yuan
Yanjie Ze
Tongzhou Mu
Aravind Rajeswaran
Hao Su
Huazhe Xu
Xiaolong Wang
+ Visual Adversarial Imitation Learning using Variational Models 2021 Rafael Rafailov
Tianhe Yu
Aravind Rajeswaran
Chelsea Finn
+ COMBO: Conservative Offline Model-Based Policy Optimization 2021 Tianhe Yu
Aviral Kumar
Rafael Rafailov
Aravind Rajeswaran
Sergey Levine
Chelsea Finn
+ Reinforcement Learning with Latent Flow 2021 Wenling Shang
Xiaofei Wang
Aravind Srinivas
Aravind Rajeswaran
Yang Gao
Pieter Abbeel
Michael Laskin
+ Behavioral Priors and Dynamics Models: Improving Performance and Domain Transfer in Offline RL 2021 Catherine Cang
Aravind Rajeswaran
Pieter Abbeel
Michael Laskin
+ Decision Transformer: Reinforcement Learning via Sequence Modeling 2021 Lili Chen
Kevin Lü
Aravind Rajeswaran
Kimin Lee
Aditya Grover
Michael Laskin
Pieter Abbeel
Aravind Srinivas
Igor Mordatch
+ COMBO: Conservative Offline Model-Based Policy Optimization 2021 Tianhe Yu
Aviral Kumar
Rafael Rafailov
Aravind Rajeswaran
Sergey Levine
Chelsea Finn
+ Reinforcement Learning with Latent Flow 2021 Wenling Shang
Xiaofei Wang
Aravind Rajeswaran
Aravind Srinivas
Yang Gao
Pieter Abbeel
Michael Laskin
+ Visual Adversarial Imitation Learning using Variational Models 2021 Rafael Rafailov
Tianhe Yu
Aravind Rajeswaran
Chelsea Finn
+ Offline Reinforcement Learning from Images with Latent Space Models 2020 Rafael Rafailov
Tianhe Yu
Aravind Rajeswaran
Chelsea Finn
+ Lyceum: An efficient and scalable ecosystem for robot learning 2020 Colin Summers
Kendall Lowrey
Aravind Rajeswaran
Siddhartha S Srinivasa
Emanuel Todorov
+ A Game Theoretic Framework for Model Based Reinforcement Learning 2020 Aravind Rajeswaran
Igor Mordatch
Vikash Kumar
+ MOReL : Model-Based Offline Reinforcement Learning 2020 Rahul Kidambi
Aravind Rajeswaran
Praneeth Netrapalli
Thorsten Joachims
+ Offline Reinforcement Learning from Images with Latent Space Models 2020 Rafael Rafailov
Tianhe Yu
Aravind Rajeswaran
Chelsea Finn
+ Lyceum: An efficient and scalable ecosystem for robot learning 2020 Colin Summers
Kendall Lowrey
Aravind Rajeswaran
Siddhartha S Srinivasa
Emanuel Todorov
+ PDF Chat Dexterous Manipulation with Deep Reinforcement Learning: Efficient, General, and Low-Cost 2019 Henry Zhu
Abhishek Gupta
Aravind Rajeswaran
Sergey Levine
Vikash Kumar
+ Online Meta-Learning 2019 Chelsea Finn
Aravind Rajeswaran
Sham M. Kakade
Sergey Levine
+ Meta-Learning with Implicit Gradients 2019 Aravind Rajeswaran
Chelsea Finn
Sham M. Kakade
Sergey Levine
+ Online Meta-Learning 2019 Chelsea Finn
Aravind Rajeswaran
Sham M. Kakade
Sergey Levine
+ Plan Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control 2018 Kendall Lowrey
Aravind Rajeswaran
Sham M. Kakade
Emanuel Todorov
Igor Mordatch
+ Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations 2018 Aravind Rajeswaran
Vikash Kumar
Abhishek Gupta
Giulia Vezzani
John Schulman
Emanuel Todorov
Sergey Levine
+ PDF Chat Reinforcement learning for non-prehensile manipulation: Transfer from simulation to physical system 2018 Kendall Lowrey
Svetoslav Kolev
Jeremy Dao
Aravind Rajeswaran
Emanuel Todorov
+ Reinforcement learning for non-prehensile manipulation: Transfer from simulation to physical system 2018 Kendall Lowrey
Svetoslav Kolev
Jeremy Dao
Aravind Rajeswaran
Emanuel Todorov
+ Variance Reduction for Policy Gradient with Action-Dependent Factorized Baselines 2018 Cathy Wu
Aravind Rajeswaran
Yan Duan
Vikash Kumar
Alexandre M. Bayen
Sham M. Kakade
Igor Mordatch
Pieter Abbeel
+ Variance Reduction for Policy Gradient with Action-Dependent Factorized Baselines 2018 Cathy Wu
Aravind Rajeswaran
Yan Duan
Vikash Kumar
Alexandre M. Bayen
Sham M. Kakade
Igor Mordatch
Pieter Abbeel
+ Dexterous Manipulation with Deep Reinforcement Learning: Efficient, General, and Low-Cost 2018 Henry Zhu
Abhishek Gupta
Aravind Rajeswaran
Sergey Levine
Vikash Kumar
+ Plan Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control 2018 Kendall Lowrey
Aravind Rajeswaran
Sham M. Kakade
Emanuel Todorov
Igor Mordatch
+ Reinforcement learning for non-prehensile manipulation: Transfer from simulation to physical system 2018 Kendall Lowrey
Svetoslav Kolev
Jeremy Dao
Aravind Rajeswaran
Emanuel Todorov
+ Divide-and-Conquer Reinforcement Learning 2017 Dibya Ghosh
Avi Singh
Aravind Rajeswaran
Vikash Kumar
Sergey Levine
+ Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations 2017 Aravind Rajeswaran
Vikash Kumar
Abhishek Gupta
John Schulman
Emanuel Todorov
Sergey Levine
+ PDF Chat A graph partitioning algorithm for leak detection in water distribution networks 2017 Aravind Rajeswaran
Sridharakumar Narasimhan
Shankar Narasimhan
+ Towards Generalization and Simplicity in Continuous Control 2017 Aravind Rajeswaran
Kendall Lowrey
Emanuel Todorov
Sham M. Kakade
+ Divide-and-Conquer Reinforcement Learning 2017 Dibya Ghosh
Avi Singh
Aravind Rajeswaran
Vikash Kumar
Sergey Levine
+ Towards Generalization and Simplicity in Continuous Control 2017 Aravind Rajeswaran
Kendall Lowrey
Emanuel Todorov
Sham M. Kakade
+ Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations 2017 Aravind Rajeswaran
Vikas Kumar
Abhishek Gupta
Giulia Vezzani
John Schulman
Emanuel Todorov
Sergey Levine
+ EPOpt: Learning Robust Neural Network Policies Using Model Ensembles 2016 Aravind Rajeswaran
Sarvjeet Ghotra
Balaraman Ravindran
Sergey Levine
+ EPOpt: Learning Robust Neural Network Policies Using Model Ensembles 2016 Aravind Rajeswaran
Sarvjeet Ghotra
Balaraman Ravindran
Sergey Levine
+ Identifying Topology of Power Distribution Networks Based on Smart Meter Data. 2016 Jayadev P. Satya
Nirav Bhatt
Ramkrishna Pasumarthy
Aravind Rajeswaran
+ PDF Chat A novel approach for phase identification in smart grids using Graph Theory and Principal Component Analysis 2016 Satya P. Jayadev
Aravind Rajeswaran
Nirav Bhatt
Ramkrishna Pasumarthy
+ A Graph Partitioning Algorithm for Leak Detection in Water Distribution Networks 2016 Aravind Rajeswaran
Sridharakumar Narasimhan
Shankar Narasimhan
+ Identifying Topology of Power Distribution Networks Based on Smart Meter Data 2016 Jayadev P Satya
Nirav Bhatt
Ramkrishna Pasumarthy
Aravind Rajeswaran
+ EPOpt: Learning Robust Neural Network Policies Using Model Ensembles 2016 Aravind Rajeswaran
Sarvjeet Ghotra
Balaraman Ravindran
Sergey Levine
+ A Graph Partitioning Algorithm for Leak Detection in Water Distribution Networks 2016 Aravind Rajeswaran
Sridharakumar Narasimhan
Shankar Narasimhan
+ A Novel Approach for Phase Identification in Smart Grids Using Graph Theory and Principal Component Analysis 2015 P Satya Jayadev
Aravind Rajeswaran
Nirav Bhatt
Ramkrishna Pasumarthy
+ A New Method for Reconstructing Network Topology from Flux Measurements. 2015 Aravind Rajeswaran
Shankar Narasimhan
+ Network Topology Identification using PCA and its Graph Theoretic Interpretations 2015 Aravind Rajeswaran
Shankar Narasimhan
+ A Novel Approach for Phase Identification in Smart Grids Using Graph Theory and Principal Component Analysis 2015 P Satya Jayadev
Aravind Rajeswaran
Nirav Bhatt
Ramkrishna Pasumarthy
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Trust Region Policy Optimization 2015 John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
11
+ Benchmarking Deep Reinforcement Learning for Continuous Control 2016 Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
7
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
7
+ Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations 2018 Aravind Rajeswaran
Vikash Kumar
Abhishek Gupta
Giulia Vezzani
John Schulman
Emanuel Todorov
Sergey Levine
6
+ D4RL: Datasets for Deep Data-Driven Reinforcement Learning 2020 Justin Fu
Aviral Kumar
Ofir Nachum
George Tucker
Sergey Levine
6
+ Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems 2020 Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
6
+ MOPO: Model-based Offline Policy Optimization 2020 Tianhe Yu
Garrett Thomas
Lantao Yu
Stefano Ermon
James Zou
Sergey Levine
Chelsea Finn
Tengyu Ma
5
+ Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction 2019 Aviral Kumar
Justin Fu
Matthew Soh
George Tucker
Sergey Levine
5
+ Behavior Regularized Offline Reinforcement Learning 2019 Yifan Wu
George Tucker
Ofir Nachum
5
+ PDF Chat Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates 2017 Shixiang Gu
Ethan Holly
Timothy Lillicrap
Sergey Levine
5
+ Plan Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control 2018 Kendall Lowrey
Aravind Rajeswaran
Sham M. Kakade
Emanuel Todorov
Igor Mordatch
5
+ Conservative Q-Learning for Offline Reinforcement Learning 2020 Aviral Kumar
Aurick Zhou
George Tucker
Sergey Levine
4
+ Continuous control with deep reinforcement learning 2016 Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
4
+ Leveraging Demonstrations for Deep Reinforcement Learning on Robotics Problems with Sparse Rewards 2017 Matej Vecerík
Todd Hester
Jonathan Scholz
Fumin Wang
Olivier Pietquin
Bilal Piot
Nicolas Heess
Thomas Rothörl
Thomas Lampe
Martin Riedmiller
4
+ Way Off-Policy Batch Deep Reinforcement Learning of Implicit Human Preferences in Dialog 2019 Natasha Jaques
Asma Ghandeharioun
Judy Hanwen Shen
Craig Ferguson
Àgata Lapedriza
Noah Jones
Shixiang Gu
Rosalind W. Picard
4
+ Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning 2019 Xue Bin Peng
Aviral Kumar
Grace Zhang
Sergey Levine
4
+ Off-Policy Policy Gradient with State Distribution Correction 2019 Yao Liu
Adith Swaminathan
Alekh Agarwal
Emma Brunskill
4
+ PDF Chat Learning dexterous in-hand manipulation 2019 OpenAI Marcin Andrychowicz
Bowen Baker
Maciek Chociej
Rafał Józefowicz
Bob McGrew
Jakub Pachocki
Arthur J Petron
Matthias Plappert
Glenn Powell
Alex Ray
4
+ EPOpt: Learning Robust Neural Network Policies Using Model Ensembles 2016 Aravind Rajeswaran
Sarvjeet Ghotra
Balaraman Ravindran
Sergey Levine
4
+ Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor 2018 Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
4
+ PDF Chat Deconstructing principal component analysis using a data reconciliation perspective 2015 Shankar Narasimhan
Nirav Bhatt
4
+ Conservative Q-Learning for Offline Reinforcement Learning 2020 Aviral Kumar
Aurick Zhou
George Tucker
Sergey Levine
3
+ Model-Based Offline Planning 2020 Arthur Argenson
Gabriel Dulac-Arnold
3
+ PDF Chat The Arcade Learning Environment: An Evaluation Platform for General Agents 2013 Marc G. Bellemare
Yavar Naddaf
Joel Veness
Michael Bowling
3
+ MOReL : Model-Based Offline Reinforcement Learning 2020 Rahul Kidambi
Aravind Rajeswaran
Praneeth Netrapalli
Thorsten Joachims
3
+ Keep Doing What Worked: Behavioral Modelling Priors for Offline Reinforcement Learning 2020 Noah Siegel
Jost Tobias Springenberg
Felix Berkenkamp
Abbas Abdolmaleki
Michael Neunert
Thomas Lampe
Roland Hafner
Nicolas Heess
Martin Riedmiller
3
+ A New Method for Reconstructing Network Topology from Flux Measurements. 2015 Aravind Rajeswaran
Shankar Narasimhan
3
+ Provably Good Batch Reinforcement Learning Without Great Exploration 2020 Yao Liu
Adith Swaminathan
Alekh Agarwal
Emma Brunskill
3
+ Principal Component Analysis 2005 Ian T. Jolliffe
3
+ PDF Chat Sim-to-Real Transfer of Robotic Control with Dynamics Randomization 2018 Xue Bin Peng
Marcin Andrychowicz
Wojciech Zaremba
Pieter Abbeel
3
+ Image Augmentation Is All You Need: Regularizing Deep Reinforcement Learning from Pixels 2020 Ilya Kostrikov
Denis Yarats
Rob Fergus
3
+ Deployment-Efficient Reinforcement Learning via Model-Based Offline Optimization 2020 Tatsuya Matsushima
Hiroki Furuta
Yutaka Matsuo
Ofir Nachum
Shixiang Gu
3
+ Decision Transformer: Reinforcement Learning via Sequence Modeling 2021 Lili Chen
Kevin Lü
Aravind Rajeswaran
Kimin Lee
Aditya Grover
Michael Laskin
Pieter Abbeel
Aravind Srinivas
Igor Mordatch
3
+ Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning 2019 Tianhe Yu
Deirdre Quillen
Zhanpeng He
Ryan Julian
Avnish Narayan
Hayden Shively
Adithya Bellathur
Karol Hausman
Chelsea Finn
Sergey Levine
3
+ PDF Chat Deep Reinforcement Learning That Matters 2018 Peter Henderson
Riashat Islam
Philip Bachman
Joëlle Pineau
Doina Precup
David Meger
3
+ PDF Chat Dexterous Manipulation with Deep Reinforcement Learning: Efficient, General, and Low-Cost 2019 Henry Zhu
Abhishek Gupta
Aravind Rajeswaran
Sergey Levine
Vikash Kumar
3
+ Asynchronous Methods for Deep Reinforcement Learning 2016 Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Tim Harley
Timothy Lillicrap
David Silver
Koray Kavukcuoglu
3
+ Emergence of Locomotion Behaviours in Rich Environments 2017 Nicolas Heess
Dhruva Tb
Sriram Srinivasan
Jay Lemmon
Josh Merel
Greg Wayne
Yuval Tassa
Tom Erez
Ziyu Wang
S. M. Ali Eslami
3
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
3
+ PDF Chat Overcoming Exploration in Reinforcement Learning with Demonstrations 2018 Ashvin Nair
Bob McGrew
Marcin Andrychowicz
Wojciech Zaremba
Pieter Abbeel
3
+ Finite-Time Bounds for Fitted Value Iteration 2008 Rémi Munos
Csaba Szepesvári
3
+ PDF Chat Supersizing self-supervision: Learning to grasp from 50K tries and 700 robot hours 2016 Lerrel Pinto
Abhinav Gupta
3
+ A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning 2010 Stéphane Ross
Geoffrey J. Gordon
J. Andrew Bagnell
3
+ Visual Foresight: Model-Based Deep Reinforcement Learning for Vision-Based Robotic Control 2018 Frederik Ebert
Chelsea Finn
Sudeep Dasari
Annie Xie
Alex X. Lee
Sergey Levine
3
+ Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations 2017 Aravind Rajeswaran
Vikash Kumar
Abhishek Gupta
John Schulman
Emanuel Todorov
Sergey Levine
3
+ PDF Chat Path integral guided policy search 2017 Yevgen Chebotar
Mrinal Kalakrishnan
Ali Abdullah Yahya
Adrian Li
Stefan Schaal
Sergey Levine
3
+ Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models 2018 Kurtland Chua
Roberto Calandra
Rowan McAllister
Sergey Levine
3
+ Dream to Control: Learning Behaviors by Latent Imagination 2019 Danijar Hafner
Timothy Lillicrap
Jimmy Ba
Mohammad Norouzi
3
+ AlgaeDICE: Policy Gradient from Arbitrary Experience 2019 Ofir Nachum
Bo Dai
Ilya Kostrikov
Yinlam Chow
Lihong Li
Dale Schuurmans
3
+ R3M: A Universal Visual Representation for Robot Manipulation 2022 Suraj Nair
Aravind Rajeswaran
Vikash Kumar
Chelsea Finn
Abhinav Gupta
3