Maximilian Lam

Follow

Generating author description...

All published works
Action Title Year Authors
+ GPU-based Private Information Retrieval for On-Device Machine Learning Inference 2024 Maximilian Lam
Jeff Johnson
Wenjie Xiong
Kiwan Maeng
Udit Gupta
Yang Li
Liangzhen Lai
Ilias Leontiadis
Minsoo Rhu
Hsien-Hsin S. Lee
+ GPU-based Private Information Retrieval for On-Device Machine Learning Inference 2023 Maximilian Lam
JEFF JOHNSON
Wenjie Xiong
Kiwan Maeng
Udit Gupta
Minsoo Rhu
Hsien-Hsin S. Lee
Vijay Janapa Reddi
Gu-Yeon Wei
David J. Brooks
+ PDF Chat Widening Access to Applied Machine Learning with TinyML 2022 Vijay Janapa Reddi
Brian Plancher
Susan Kennedy
Laurence Moroney
Pete Warden
Lara Suzuki
Anant Agarwal
Colby Banbury
Massimo Banzi
Matthew R. Bennett
+ Tabula: Efficiently Computing Nonlinear Activation Functions for Secure Neural Network Inference 2022 Maximilian Lam
Michael Mitzenmacher
Vijay Janapa Reddi
Gu-Yeon Wei
David J. Brooks
+ QuaRL: Quantization for Sustainable Reinforcement Learning. 2021 Srivatsan Krishnan
Maximilian Lam
Sharad Chitlangia
Zishen Wan
Gabriel Barth-Maron
Aleksandra Faust
Vijay Janapa Reddi
+ The People's Speech: A Large-Scale Diverse English Speech Recognition Dataset for Commercial Usage. 2021 Daniel Gálvez
Greg Diamos
Juan Ciro
Juan Felipe Cerón
Keith Achorn
Anjali Gopi
David Kanter
Maximilian Lam
Mark Mazumder
Vijay Janapa Reddi
+ PDF Chat The People's Speech: A Large-Scale Diverse English Speech Recognition Dataset for Commercial Usage 2021 Daniel Gálvez
Greg Diamos
Juan Ciro
Juan Felipe Cerón
Keith Achorn
Anjali Gopi
David Kanter
Maximilian Lam
Mark Mazumder
Vijay Janapa Reddi
+ Widening Access to Applied Machine Learning with TinyML. 2021 Vijay Janapa Reddi
Brian Plancher
Susan Kennedy
Laurence Moroney
Pete Warden
Anant Agarwal
Colby Banbury
Massimo Banzi
Matthew R. Bennett
Benjamin Brown
+ Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix 2021 Maximilian Lam
Gu-Yeon Wei
David Brooks
Vijay Janapa Reddi
Michael Mitzenmacher
+ Widening Access to Applied Machine Learning with TinyML 2021 Vijay Janapa Reddi
Brian Plancher
Susan Kennedy
Laurence Moroney
Pete Warden
Anant Agarwal
Colby Banbury
Massimo Banzi
Matthew R. Bennett
Benjamin P. Brown
+ The People's Speech: A Large-Scale Diverse English Speech Recognition Dataset for Commercial Usage 2021 Daniel Gálvez
Greg Diamos
Juan Ciro
Juan Felipe Cerón
Keith Achorn
Anjali Gopi
David Kanter
Maximilian Lam
Mark Mazumder
Vijay Janapa Reddi
+ Quantized Neural Network Inference with Precision Batching. 2020 Maximilian Lam
Zachary Yedidia
Colby Banbury
Vijay Janapa Reddi
+ Quantized Neural Network Inference with Precision Batching 2020 Maximilian Lam
Zachary Yedidia
Colby Banbury
Vijay Janapa Reddi
+ Quantized Reinforcement Learning (QuaRL) 2019 Srivatsan Krishnan
Sharad Chitlangia
Maximilian Lam
Zishen Wan
Aleksandra Faust
Vijay Janapa Reddi
+ QuaRL: Quantization for Fast and Environmentally Sustainable Reinforcement Learning 2019 Srivatsan Krishnan
Maximilian Lam
Sharad Chitlangia
Zishen Wan
Gabriel Barth-Maron
Aleksandra Faust
Vijay Janapa Reddi
+ PDF Chat Cataloging the Visible Universe Through Bayesian Inference at Petascale 2018 Jeffrey Regier
Jon McAuliffe
R. C. Thomas
Prabhat
Kiran Pamnany
Keno Fischer
Andreas Noack
Maximilian Lam
Jarrett Revels
Steve Howard
+ Cataloging the Visible Universe through Bayesian Inference at Petascale 2018 Jeffrey Regier
Kiran Pamnany
Keno Fischer
Andreas Noack
Maximilian Lam
Jarrett Revels
Steve Howard
Ryan Giordano
David J. Schlegel
Jon McAuliffe
+ Word2Bits - Quantized Word Vectors 2018 Maximilian Lam
+ Speeding Up Distributed Machine Learning Using Codes 2017 Kangwook Lee
Maximilian Lam
Ramtin Pedarsani
Dimitris Papailiopoulos
Kannan Ramchandran
+ Gradient Diversity Empowers Distributed Learning. 2017 Dong Yin
Ashwin Pananjady
Maximilian Lam
Dimitris Papailiopoulos
Kannan Ramchandran
Peter L. Bartlett
+ Speeding up distributed machine learning using codes 2016 Kangwook Lee
Maximilian Lam
Ramtin Pedarsani
Dimitris Papailiopoulos
Kannan Ramchandran
+ Cyclades: Conflict-free Asynchronous Machine Learning 2016 Xinghao Pan
Maximilian Lam
Stephen Tu
Dimitris Papailiopoulos
Ce Zhang
Michael I. Jordan
Kannan Ramchandran
Christopher Ré
+ CYCLADES: Conflict-free Asynchronous Machine Learning 2016 Xinghao Pan
Maximilian Lam
Stephen Tu
Dimitris Papailiopoulos
Ce Zhang
Michael I. Jordan
Kannan Ramchandran
Chris Ré
Benjamin Recht
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent 2011 Feng Niu
Benjamin Recht
Christopher Ré
Stephen J. Wright
5
+ Parallelized Stochastic Gradient Descent 2010 Martin Zinkevich
Markus Weimer
Lihong Li
Alex Smola
3
+ AdaptivFloat: A Floating-point based Data Type for Resilient Deep Learning Inference 2019 Thierry Tambe
En-Yu Yang
Zishen Wan
Yuntian Deng
Vijay Janapa Reddi
Alexander M. Rush
David Brooks
Gu-Yeon Wei
3
+ PDF Chat TOFEC: Achieving optimal throughput-delay trade-off of cloud storage using erasure codes 2014 Guanfeng Liang
Ulaş C. Kozat
2
+ Stochastic variational inference 2013 Matthew D. Hoffman
David M. Blei
Chong Wang
John Paisley
2
+ PDF Chat Learning Transferable Architectures for Scalable Image Recognition 2018 Barret Zoph
Vijay Vasudevan
Jonathon Shlens
Quoc V. Le
2
+ PDF Chat Personalizing ASR for Dysarthric and Accented Speech with Limited Data 2019 Joel Shor
Dotan Emanuel
Oran Lang
Omry Tuval
Michael P. Brenner
Julie Cattiau
Fernando G. Vieira
Maeve McNally
Taylor Charbonneau
Melissa Nollstadt
2
+ Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition 2018 Pete Warden
2
+ Distributed Delayed Stochastic Optimization 2011 Alekh Agarwal
John C. Duchi
2
+ PDF Chat A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems 2016 Alen Alexanderian
Noémi Petra
Georg Stadler
Omar Ghattas
2
+ See What I’m Saying? Comparing Intelligent Personal Assistant Use for Native and Non-Native Language Speakers 2020 Yunhan Wu
Daniel Rough
Anna Bleakley
Justin Edwards
Orla Cooney
Philip Doyle
Leigh Clark
Benjamin R. Cowan
2
+ Continuous control with deep reinforcement learning 2015 Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
2
+ Massively Parallel Methods for Deep Reinforcement Learning 2015 Arun Sukumaran Nair
P. Srinivasan
Sam Blackwell
Cagdas Alcicek
Rory Fearon
Alessandro De Maria
Vedavyas Panneershelvam
Mustafa Suleyman
Charles Beattie
Stig Petersen
2
+ A Solution to the Network Challenges of Data Recovery in Erasure-coded Distributed Storage Systems: A Study on the Facebook Warehouse Cluster 2013 K. V. Rashmi
Nihar B. Shah
Dikang Gu
Hairong Kuang
Dhruba Borthakur
Kannan Ramchandran
2
+ PDF Chat When do redundant requests reduce latency ? 2013 Nihar B. Shah
Kangwook Lee
Kannan Ramchandran
2
+ Training with Noise is Equivalent to Tikhonov Regularization 1995 Chris Bishop
2
+ Hello Edge: Keyword Spotting on Microcontrollers 2017 Yundong Zhang
Naveen Suda
Liangzhen Lai
Vikas Chandra
2
+ PACT: Parameterized Clipping Activation for Quantized Neural Networks 2018 Jungwook Choi
Zhuo Wang
Swagath Venkataramani
Pierce Chuang
Vijayalakshmi Srinivasan
Kailash Gopalakrishnan
2
+ Visual Wake Words Dataset 2019 Aakanksha Chowdhery
Pete Warden
Jonathon Shlens
Andrew Howard
Rocky Rhodes
2
+ Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU 2016 Mohammad Babaeizadeh
Iuri Frosio
Stephen Tyree
Jason Clemons
Jan Kautz
2
+ Asynchronous Methods for Deep Reinforcement Learning 2016 Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Tim Harley
Timothy Lillicrap
David Silver
Koray Kavukcuoglu
2
+ Relaxed Quantization for Discretized Neural Networks 2019 Christos Louizos
Matthias Reisser
Tijmen Blankevoort
Efstratios Gavves
Max Welling
2
+ Common Voice: A Massively-Multilingual Speech Corpus 2019 Rosana Ardila
Megan Branson
Kelly Davis
Michael Henretty
Michael Köhler
Josh Meyer
Reuben Morais
Lindsay Saunders
Francis M. Tyers
Gregor Weber
2
+ Acme: A Research Framework for Distributed Reinforcement Learning 2020 Matt Hoffman
Bobak Shahriari
John Aslanides
Gabriel Barth-Maron
Feryal Behbahani
Tamara Norman
Abbas Abdolmaleki
Albin Cassirer
Fan Yang
Kate Baumli
2
+ Variational Inference: A Review for Statisticians 2017 David M. Blei
Alp Kucukelbir
Jon McAuliffe
2
+ PDF Chat The Arcade Learning Environment: An Evaluation Platform for General Agents 2013 Marc G. Bellemare
Yavar Naddaf
Joel Veness
Michael Bowling
2
+ PDF Chat Fundamental Limits of Caching 2014 Mohammad Ali Maddah-Ali
Urs Niesen
2
+ PDF Chat Efficient task replication for fast response times in parallel computation 2014 Da Wang
Gauri Joshi
Gregory W. Wornell
2
+ PDF Chat Network Coding for Distributed Storage Systems 2010 Alexandros G. Dimakis
P. Brighten Godfrey
Yunnan Wu
Martin J. Wainwright
Kannan Ramchandran
2
+ PDF Chat Parallel stochastic gradient algorithms for large-scale matrix completion 2013 Benjamin Recht
Christopher Ré
2
+ Forward-Mode Automatic Differentiation in Julia 2016 Jarrett Revels
Miles Lubin
Theodore Papamarkou
2
+ Trained Ternary Quantization 2016 Chenzhuo Zhu
Song Han
Huizi Mao
William J. Dally
2
+ Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations 2016 Itay Hubara
Matthieu Courbariaux
Daniel Soudry
Ran El‐Yaniv
Yoshua Bengio
2
+ PDF Chat DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving 2015 Chenyi Chen
Ari Seff
Alain L. Kornhauser
Jianxiong Xiao
2
+ PDF Chat Julia: A Fresh Approach to Numerical Computing 2017 Jeff Bezanson
Alan Edelman
Stefan Karpinski
Viral B. Shah
2
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
2
+ A Cascade Architecture for Keyword Spotting on Mobile Devices 2017 Alexander Gruenstein
Raziel Álvarez
Chris Thornton
Mohammadali Ghodrat
2
+ PDF Chat Instructional strategies and course design for teaching statistics online: perspectives from online students 2017 Dazhi Yang
2
+ TensorFlow.js: Machine Learning for the Web and Beyond 2019 Daniel Smilkov
Nikhil Thorat
Yannick Assogba
Ann Yuan
Nick Kreeger
Ping Yu
Kangyi Zhang
Shanqing Cai
Eric Nielsen
David Soergel
2
+ TossingBot: Learning to Throw Arbitrary Objects with Residual Physics 2019 Andy Zeng
Shuran Song
Johnny Lee
A. Rodriquez
Thomas A.Funkouser
2
+ Quantizing deep convolutional networks for efficient inference: A whitepaper 2018 Raghuraman Krishnamoorthi
2
+ PDF Chat The NumPy Array: A Structure for Efficient Numerical Computation 2011 Stéfan van der Walt
Steven C. Colbert
Gaël Varoquaux
2
+ Speeding up distributed machine learning using codes 2016 Kangwook Lee
Maximilian Lam
Ramtin Pedarsani
Dimitris Papailiopoulos
Kannan Ramchandran
2
+ Robust Shift-and-Invert Preconditioning: Faster and More Sample Efficient Algorithms for Eigenvector Computation 2015 Chi Jin
Sham M. Kakade
Cameron Musco
Praneeth Netrapalli
Aaron Sidford
1
+ Fundamental Limits of Distributed Caching in D2D Wireless Networks 2013 Mingyue Ji
Giuseppe Caire
Andreas F. Molisch
1
+ PDF Chat Why random reshuffling beats stochastic gradient descent 2019 Mert Gürbüzbalaban
Asuman Ozdaglar
Pablo A. Parrilo
1
+ PDF Chat Asynchronous Stochastic Coordinate Descent: Parallelism and Convergence Properties 2015 Ji Liu
Stephen J. Wright
1
+ PDF Chat MLI: An API for Distributed Machine Learning 2013 Evan Sparks
Ameet Talwalkar
Virginia Smith
Jey Kottalam
Xinghao Pan
Joseph E. Gonzalez
Michael J. Franklin
Michael I. Jordan
Tim Kraska
1
+ Perturbed Iterate Analysis for Asynchronous Stochastic Optimization 2015 Horia Mania
Xinghao Pan
Dimitris Papailiopoulos
Benjamin Recht
Kannan Ramchandran
Michael I. Jordan
1
+ PDF Chat On the Delay-Storage Trade-Off in Content Download from Coded Distributed Storage Systems 2014 Gauri Joshi
Yanpei Liu
Emina Soljanin
1