+
PDF
Chat
|
Fusion of Tree-induced Regressions for Clinico-genomic Data
|
2024
|
Jeroen M. Goedhart
Mark A. van de Wiel
Wessel N. van Wieringen
Thomas Klausch
|
+
PDF
Chat
|
Refining CART Models for Covariate Shift with Importance Weight
|
2024
|
Mingyang Cai
Thomas Klausch
Mark A. van de Wiel
|
+
PDF
Chat
|
A flexible model for Record Linkage
|
2024
|
Kayané Robach
Stéphanie van der Pas
Mark A. van de Wiel
Michel H. Hof
|
+
PDF
Chat
|
Guiding adaptive shrinkage by co-data to improve regression-based
prediction and feature selection
|
2024
|
Mark A. van de Wiel
Wessel N. van Wieringen
|
+
|
Linked shrinkage to improve estimation of interaction effects in regression models
|
2024
|
Mark A. van de Wiel
Matteo Amestoy
Jeroen Hoogland
|
+
PDF
Chat
|
Penalized regression with multiple sources of prior effects
|
2023
|
Armin Rauschenberger
Zied Landoulsi
Mark A. van de Wiel
Enrico Glaab
|
+
PDF
Chat
|
A Bayesian accelerated failure time model for interval censored three-state screening outcomes
|
2023
|
Thomas Klausch
Eddymurphy U. Akwiwu
Mark A. van de Wiel
Veerle M.H. Coupé
Johannes Berkhof
|
+
PDF
Chat
|
ecpc: an R-package for generic co-data models for high-dimensional prediction
|
2023
|
Mirrelijn M. van Nee
Lodewyk F.A. Wessels
Mark A. van de Wiel
|
+
|
Think before you shrink: Alternatives to default shrinkage methods can improve prediction accuracy, calibration and coverage
|
2023
|
Mark A. van de Wiel
Gwenaël G. R. Leday
Jeroen Hoogland
Martijn W. Heymans
Erik W. van Zwet
A. H. Zwinderman
|
+
|
Linked shrinkage to improve estimation of interaction effects in regression models
|
2023
|
Mark A. van de Wiel
Matteo Amestoy
Jeroen Hoogland
|
+
|
Co-data Learning for Bayesian Additive Regression Trees
|
2023
|
Jeroen M. Goedhart
Thomas Klausch
Jurriaan Janssen
Mark A. van de Wiel
|
+
|
Fast Marginal Likelihood Estimation of Penalties for Group-Adaptive Elastic Net
|
2022
|
Mirrelijn M. van Nee
Tim van de Brug
Mark A. van de Wiel
|
+
|
Estimation of predictive performance in high-dimensional data settings using learning curves
|
2022
|
Jeroen M. Goedhart
Thomas Klausch
Mark A. van de Wiel
|
+
PDF
Chat
|
Semi‐supervised empirical Bayes group‐regularized factor regression
|
2022
|
Magnus Münch
Mark A. van de Wiel
Aad van der Vaart
Carel F.W. Peeters
|
+
|
ecpc: An R-package for generic co-data models for high-dimensional prediction
|
2022
|
Mirrelijn M. van Nee
Lodewyk F.A. Wessels
Mark A. van de Wiel
|
+
|
Estimation of Predictive Performance in High-Dimensional Data Settings using Learning Curves
|
2022
|
Jeroen M. Goedhart
Thomas Klausch
Mark A. van de Wiel
|
+
|
Penalised regression with multiple sources of prior effects
|
2022
|
Armin Rauschenberger
Zied Landoulsi
Mark A. van de Wiel
Enrico Glaab
|
+
PDF
Chat
|
Flexible co‐data learning for high‐dimensional prediction
|
2021
|
Mirrelijn M. van Nee
Lodewyk F.A. Wessels
Mark A. van de Wiel
|
+
PDF
Chat
|
Fast Cross-validation for Multi-penalty High-dimensional Ridge Regression
|
2021
|
Mark A. van de Wiel
Mirrelijn M. van Nee
Armin Rauschenberger
|
+
|
Conditional Inference Procedures in a Permutation Test Framework [R package coin version 1.4-0]
|
2021
|
Torsten Hothorn
Henric Winell
Kurt Hornik
Mark A. van de Wiel
Achim Zeileis
|
+
|
A Bayesian accelerated failure time model for interval censored three-state screening outcomes
|
2021
|
Thomas Klausch
Eddymurphy U. Akwiwu
Mark A. van de Wiel
Veerle M.H. Coupé
Johannes Berkhof
|
+
|
Semi-supervised empirical Bayes group-regularized factor regression
|
2021
|
Magnus Münch
Mark A. van de Wiel
Aad van der Vaart
Carel F.W. Peeters
|
+
|
Fast marginal likelihood estimation of penalties for group-adaptive elastic net
|
2021
|
Mirrelijn M. van Nee
Tim van de Brug
Mark A. van de Wiel
|
+
PDF
Chat
|
Drug sensitivity prediction with normal inverse Gaussian shrinkage informed by external data
|
2020
|
Magnus Münch
Mark A. van de Wiel
Sylvia Richardson
Gwenaël G. R. Leday
|
+
|
Flexible co-data learning for high-dimensional prediction
|
2020
|
Mirrelijn M. van Nee
Lodewyk F.A. Wessels
Mark A. van de Wiel
|
+
|
Updating of the Gaussian graphical model through targeted penalized estimation
|
2020
|
Wessel N. van Wieringen
Koen A. Stam
Carel F.W. Peeters
Mark A. van de Wiel
|
+
|
Fast cross-validation for multi-penalty ridge regression
|
2020
|
Mark A. van de Wiel
Mirrelijn M. van Nee
Armin Rauschenberger
|
+
|
Flexible co-data learning for high-dimensional prediction
|
2020
|
Mirrelijn M. van Nee
Lodewyk F.A. Wessels
Mark A. van de Wiel
|
+
|
Adaptive group-regularized logistic elastic net regression
|
2019
|
Magnus Münch
Carel F.W. Peeters
Aad van der Vaart
Mark A. van de Wiel
|
+
PDF
Chat
|
Sparse classification with paired covariates
|
2019
|
Armin Rauschenberger
Iuliana Ciocănea‐Teodorescu
Marianne A. Jonker
Renée X. de Menezes
Mark A. van de Wiel
|
+
|
Conditional Inference Procedures in a Permutation Test Framework [R package coin version 1.3-1]
|
2019
|
Torsten Hothorn
Henric Winell
Kurt Hornik
Mark A. van de Wiel
Achim Zeileis
|
+
PDF
Chat
|
Estimation of variance components, heritability and the ridge penalty in high-dimensional generalized linear models
|
2019
|
Jurre R. Veerman
Gwenaël G. R. Leday
Mark A. van de Wiel
|
+
PDF
Chat
|
The spectral condition number plot for regularization parameter evaluation
|
2019
|
Carel F.W. Peeters
Mark A. van de Wiel
Wessel N. van Wieringen
|
+
|
Stable prediction with radiomics data.
|
2019
|
Carel F.W. Peeters
Caroline Übelhör
Steven W. Mes
Roland M. Martens
Thomas Koopman
Pim de Graaf
Floris H. P. van Velden
Ronald Boellaard
Jonas A. Castelijns
Dennis E. te Beest
|
+
|
Estimation of variance components, heritability and the ridge penalty in high-dimensional generalized linear models
|
2019
|
Jurre R. Veerman
Gwenaël G. R. Leday
Mark A. van de Wiel
|
+
|
Incorporating prior information and borrowing information in high-dimensional sparse regression using the horseshoe and variational Bayes
|
2019
|
Gino B. Kpogbezan
Mark A. van de Wiel
Wessel N. van Wieringen
Aad van der Vaart
|
+
|
Stable prediction with radiomics data
|
2019
|
Carel F.W. Peeters
Caroline Übelhör
Steven W. Mes
Roland M. Martens
Thomas Koopman
Pim de Graaf
Floris H. P. van Velden
Ronald Boellaard
Jonas A. Castelijns
Dennis E. te Beest
|
+
|
Estimation of variance components, heritability and the ridge penalty in high-dimensional generalized linear models
|
2019
|
Jurre R. Veerman
Gwenael G. R. Leday
Mark A. van de Wiel
|
+
PDF
Chat
|
Learning from a lot: Empirical Bayes for high‐dimensional model‐based prediction
|
2018
|
Mark A. van de Wiel
Dennis E. te Beest
Magnus Münch
|
+
|
Adaptive group-regularized logistic elastic net regression.
|
2018
|
Magnus Münch
Carel F.W. Peeters
Aad van der Vaart
Mark A. van de Wiel
|
+
|
Detecting SNPs with interactive effects on a quantitative trait
|
2018
|
Armin Rauschenberger
Renée X. de Menezes
Mark A. van de Wiel
Natasja M. van Schoor
Marianne A. Jonker
|
+
|
Estimating Bayesian Optimal Treatment Regimes for Dichotomous Outcomes using Observational Data
|
2018
|
Thomas Klausch
Peter van de Ven
Tim van de Brug
Mark A. van de Wiel
Johannes Berkhof
|
+
|
Adaptive group-regularized logistic elastic net regression
|
2018
|
Magnus Münch
Carel F.W. Peeters
Aad van der Vaart
Mark A. van de Wiel
|
+
PDF
Chat
|
Improved high-dimensional prediction with Random Forests by the use of co-data
|
2017
|
Dennis E. te Beest
Steven W. Mes
Saskia M. Wilting
Ruud H. Brakenhoff
Mark A. van de Wiel
|
+
PDF
Chat
|
Methods for significance testing of categorical covariates in logistic regression models after multiple imputation: power and applicability analysis
|
2017
|
Iris Eekhout
Mark A. van de Wiel
Martijn W. Heymans
|
+
|
Improved high-dimensional prediction with Random Forests by the use of co-data
|
2017
|
Dennis E. te Beest
Steven W. Mes
Ruud H. Brakenhoff
Mark A. van de Wiel
|
+
PDF
Chat
|
An empirical Bayes approach to network recovery using external knowledge
|
2017
|
Gino B. Kpogbezan
Aad van der Vaart
Wessel N. van Wieringen
Gwenaël G. R. Leday
Mark A. van de Wiel
|
+
|
Gene network reconstruction using global-local shrinkage priors
|
2017
|
Gwenaël G. R. Leday
Mathisca C. M. de Gunst
Gino B. Kpogbezan
Aad van der Vaart
Wessel N. van Wieringen
Mark A. van de Wiel
|
+
|
Learning from a lot: Empirical Bayes in high-dimensional prediction settings
|
2017
|
Mark A. van de Wiel
Dennis E. te Beest
Magnus Münch
|
+
|
Blood‐based metabolic signatures in Alzheimer's disease
|
2017
|
Francisca A. de Leeuw
Carel F.W. Peeters
Maartje I. Kester
Amy C. Harms
Eduard A. Struys
Thomas Hankemeier
Herman van Vlijmen
Sven J. van der Lee
Cornelia M. van Duijn
Philip Scheltens
|
+
|
Improved high-dimensional prediction with Random Forests by the use of co-data
|
2017
|
Dennis E. te Beest
Steven W. Mes
Ruud H. Brakenhoff
Mark A. van de Wiel
|
+
PDF
Chat
|
Erratum to: Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation
|
2016
|
Simone Wahl
Anne‐Laure Boulesteix
Astrid Zierer
Barbara Thorand
Mark A. van de Wiel
|
+
PDF
Chat
|
Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation
|
2016
|
Simone Wahl
Anne‐Laure Boulesteix
Astrid Zierer
Barbara Thorand
Mark A. van de Wiel
|
+
|
An empirical Bayes approach to network recovery using external knowledge
|
2016
|
Gino B. Kpogbezan
Aad van der Vaart
Wessel N. van Wieringen
Gwenaël G. R. Leday
Mark A. van de Wiel
|
+
|
An empirical Bayes approach to network recovery using external knowledge
|
2016
|
Gino B. Kpogbezan
Aad van der Vaart
Wessel N. van Wieringen
Gwenaël G. R. Leday
Mark A. van de Wiel
|
+
|
Gene network reconstruction using global-local shrinkage priors
|
2015
|
Gwenaël G. R. Leday
Mathisca C. M. de Gunst
Gino B. Kpogbezan
Aad van der Vaart
Wessel N. van Wieringen
Mark A. van de Wiel
|
+
PDF
Chat
|
Better prediction by use of co‐data: adaptive group‐regularized ridge regression
|
2015
|
Mark A. van de Wiel
Tonje G. Lien
Wina Verlaat
Wessel N. van Wieringen
Saskia M. Wilting
|
+
|
Gene network reconstruction using global-local shrinkage priors
|
2015
|
Gwenaël G. R. Leday
Mathisca C. M. de Gunst
Gino B. Kpogbezan
Aad van der Vaart
Wessel N. van Wieringen
Mark A. van de Wiel
|
+
|
Better prediction by use of co-data: Adaptive group-regularized ridge regression
|
2014
|
Mark A. van de Wiel
Tonje G. Lien
Wina Verlaat
Wessel N. van Wieringen
Saskia M. Wilting
|
+
PDF
Chat
|
ShrinkBayes: a versatile R-package for analysis of count-based sequencing data in complex study designs
|
2014
|
Mark A. van de Wiel
Maarten Neerincx
Tineke E. Buffart
Daoud Sie
Henk M.W. Verheul
|
+
|
Analysis of Next Generation Sequencing Data Using Integrated Nested Laplace Approximation (INLA)
|
2014
|
Andrea Riebler
Mark D. Robinson
Mark A. van de Wiel
|
+
|
Better prediction by use of co-data: Adaptive group-regularized ridge regression
|
2014
|
Mark A. van de Wiel
Tonje G. Lien
Wina Verlaat
Wessel N. van Wieringen
Saskia M. Wilting
|
+
|
Modeling association between DNA copy number and gene expression with constrained piecewise linear regression splines
|
2013
|
Gwenaël G. R. Leday
Aad van der Vaart
Wessel N. van Wieringen
Mark A. van de Wiel
|
+
|
General power and sample size calculations for high-dimensional genomic data
|
2013
|
Maarten van Iterson
Mark A. van de Wiel
Judith M. Boer
Renée X. de Menezes
|
+
|
Confidence scores for prediction models
|
2011
|
Thomas A. Gerds
Mark A. van de Wiel
|
+
PDF
Chat
|
Spatial Clustering of Array CGH Features in Combination with Hierarchical Multiple Testing
|
2010
|
Kyung In Kim
Étienne Roquain
Mark A. van de Wiel
|
+
PDF
Chat
|
Optimal weighting for false discovery rate control
|
2009
|
Étienne Roquain
Mark A. van de Wiel
|
+
|
Comments on: Control of the false discovery rate under dependence using the bootstrap and subsampling
|
2008
|
José A. Ferreira
Mark A. van de Wiel
|
+
PDF
Chat
|
Effects of dependence in high-dimensional multiple testing problems
|
2008
|
Kyung In Kim
Mark A. van de Wiel
|
+
|
A nonparametric control chart based on the Mann-Whitney statistic
|
2008
|
S. Chakraborti
Mark A. van de Wiel
|
+
|
Implementing a Class of Permutation Tests: The<b>coin</b>Package
|
2008
|
Torsten Hothorn
Kurt Hornik
Mark A. van de Wiel
Achim Zeileis
|
+
|
SOME COMMENTS ON FALSE DISCOVERY RATE
|
2007
|
Avner Bar‐Hen
Kyung In Kim
Mark A. van de Wiel
|
+
PDF
Chat
|
A Lego System for Conditional Inference
|
2006
|
Torsten Hothorn
Kurt Hornik
Mark A. van de Wiel
Achim Zeileis
|
+
|
A Note on Sample Size Determination for a Nonparametric Test of Location
|
2006
|
S. Chakraborti
Bang Hong
Mark A. van de Wiel
|
+
|
The null distribution of Kendall's rank correlation statistic in the presence of ties
|
2005
|
Mark A. van de Wiel
|
+
|
coin: Conditional Inference Procedures in a Permutation Test Framework
|
2005
|
Torsten Hothorn
Henric Winell
Kurt Hornik
Mark A. van de Wiel
Achim Zeileis
|
+
|
Exact null distributions of distribution-free quadratic t-sample statistics
|
2003
|
A. Di Bucchianico
Mark A. van de Wiel
|
+
|
Exact null distributions of quadratic distribution-free statistics for two-way classification
|
2003
|
Mark A. van de Wiel
|
+
|
Exact Distributions of Multiple Comparisons Rank Statistics
|
2002
|
Mark A. van de Wiel
|
+
|
The split-up algorithm: a fast symbolic method for computing p-values of distribution-free statistics
|
2001
|
Mark A. van de Wiel
|
+
|
Fast computation of the exact null distribution of Spearman's ρ and Page's L statistic for samples with and without ties
|
2001
|
Mark A. van de Wiel
A. Di Bucchianico
|
+
|
EXACT NON-NULL DISTRIBUTIONS OF RANK STATISTICS
|
2001
|
Mark A. van de Wiel
|
+
|
Edgeworth expansions with exact cumulants for two-sample linear rank statistics
|
1998
|
Mark A. van de Wiel
|