Mateja Jamnik

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Measuring Cross-Modal Interactions in Multimodal Models 2024 Laura Wenderoth
Konstantin Hemker
Nikola Simidjievski
Mateja Jamnik
+ PDF Chat PATHS: A Hierarchical Transformer for Efficient Whole Slide Image Analysis 2024 Zak Buzzard
Konstantin Hemker
Nikola Simidjievski
Mateja Jamnik
+ PDF Chat End-to-End Ontology Learning with Large Language Models 2024 Andrea Lo
Albert Q. Jiang
Wenda Li
Mateja Jamnik
+ PDF Chat Efficient Bias Mitigation Without Privileged Information 2024 Mateo Espinosa Zarlenga
Swami Sankaranarayanan
Jerone T. A. Andrews
Zohreh Shams
Mateja Jamnik
Alice Xiang
+ PDF Chat TabEBM: A Tabular Data Augmentation Method with Distinct Class-Specific Energy-Based Models 2024 Andrei Margeloiu
Xiangjian Jiang
Nikola Simidjievski
Mateja Jamnik
+ PDF Chat Repurposing Language Models into Embedding Models: Finding the Compute-Optimal Recipe 2024 Alicja Ziarko
Albert Q. Jiang
Bartosz Piotrowski
Wenda Li
Mateja Jamnik
Piotr Miłoś
+ PDF Chat Evaluating language models for mathematics through interactions 2024 Katherine M. Collins
Albert Q. Jiang
Simon Frieder
Lionel Wong
Miri Zilka
Umang Bhatt
Thomas Lukasiewicz
Yuhuai Wu
Joshua B. Tenenbaum
William Hart
+ PDF Chat TabMDA: Tabular Manifold Data Augmentation for Any Classifier using Transformers with In-context Subsetting 2024 Andrei Margeloiu
Adrián Bazaga
Nikola Simidjievski
Píetro Lió
Mateja Jamnik
+ PDF Chat MM-Lego: Modular Biomedical Multimodal Models with Minimal Fine-Tuning 2024 Konstantin Hemker
Nikola Simidjievski
Mateja Jamnik
+ PDF Chat Understanding Inter-Concept Relationships in Concept-Based Models 2024 Naveen Raman
Mateo Espinosa Zarlenga
Mateja Jamnik
+ PDF Chat Sphere Neural-Networks for Rational Reasoning 2024 Tiansi Dong
Mateja Jamnik
Píetro Lió
+ Do Concept Bottleneck Models Obey Locality? 2024 Naveen Raman
Mateo Espinosa Zarlenga
Juyeon Heo
Mateja Jamnik
+ Human Uncertainty in Concept-Based AI Systems 2023 Katherine M. Collins
Matthew L Barker
Mateo Espinosa Zarlenga
Naveen Raman
Umang Bhatt
Mateja Jamnik
Ilia Sucholutsky
Adrian Weller
Krishnamurthy Dvijotham
+ PDF Chat Towards Robust Metrics for Concept Representation Evaluation 2023 Mateo Espinosa Zarlenga
Pietro Barbiero
Zohreh Shams
Dmitry Kazhdan
Umang Bhatt
Adrian Weller
Mateja Jamnik
+ PDF Chat Weight Predictor Network with Feature Selection for Small Sample Tabular Biomedical Data 2023 Andrei Margeloiu
Nikola Simidjievski
Píetro Lió
Mateja Jamnik
+ Towards Robust Metrics for Concept Representation Evaluation 2023 Mateo Espinosa Zarlenga
Pietro Barbiero
Zohreh Shams
Dmitry Kazhdan
Umang Bhatt
Adrian Weller
Mateja Jamnik
+ GCI: A (G)raph (C)oncept (I)nterpretation Framework 2023 Dmitry Kazhdan
Botty Dimanov
Lucie Charlotte Magister
Pietro Barbiero
Mateja Jamnik
Píetro Lió
+ Human Uncertainty in Concept-Based AI Systems 2023 Katherine M. Collins
Matthew L Barker
Mateo Espinosa Zarlenga
Naveen Raman
Umang Bhatt
Mateja Jamnik
Ilia Sucholutsky
Adrian Weller
Krishnamurthy Dvijotham
+ CGXplain: Rule-Based Deep Neural Network Explanations Using Dual Linear Programs 2023 Konstantin Hemker
Zohreh Shams
Mateja Jamnik
+ Interpretable Neural-Symbolic Concept Reasoning 2023 Pietro Barbiero
Gabriele Ciravegna
Francesco Giannini
Mateo Espinosa Zarlenga
Lucie Charlotte Magister
Alberto Tonda
Píetro Lió
Fŕed́eric Precioso
Mateja Jamnik
Giuseppe Marra
+ Evaluating Language Models for Mathematics through Interactions 2023 Katherine M. Collins
Albert Q. Jiang
Simon Frieder
Lionel Wong
Miri Zilka
Umang Bhatt
Thomas Lukasiewicz
Yuhuai Wu
Joshua B. Tenenbaum
William E. Hart
+ ProtoGate: Prototype-based Neural Networks with Local Feature Selection for Tabular Biomedical Data 2023 Xiangjian Jiang
Andrei Margeloiu
Nikola Simidjievski
Mateja Jamnik
+ Enhancing Representation Learning on High-Dimensional, Small-Size Tabular Data: A Divide and Conquer Method with Ensembled VAEs 2023 Navindu Leelarathna
Andrei Margeloiu
Mateja Jamnik
Nikola Simidjievski
+ PDF Chat CGXplain: Rule-Based Deep Neural Network Explanations Using Dual Linear Programs 2023 Konstantin Hemker
Zohreh Shams
Mateja Jamnik
+ Learning to Receive Help: Intervention-Aware Concept Embedding Models 2023 Mateo Espinosa Zarlenga
Katherine M. Collins
Krishnamurthy Dvijotham
Adrian Weller
Zohreh Shams
Mateja Jamnik
+ Multilingual Mathematical Autoformalization 2023 Albert Q. Jiang
Wenda Li
Mateja Jamnik
+ HEALNet -- Hybrid Multi-Modal Fusion for Heterogeneous Biomedical Data 2023 Konstantin Hemker
Nikola Smidjievski
Mateja Jamnik
+ Discrete Lagrangian Neural Networks with Automatic Symmetry Discovery 2023 Yana Lishkova
Paul Scherer
Steffen Ridderbusch
Mateja Jamnik
Píetro Lió
Sina Ober‐Blöbaum
Christian Offen
+ PDF Chat Concept Embedding Models 2022 Mateo Espinosa Zarlenga
Pietro Barbiero
Gabriele Ciravegna
Giuseppe Marra
Francesco Giannini
Michelangelo Diligenti
Fŕed́eric Precioso
Stefano Melacci
Adrian Weller
Píetro Lió
+ PDF Chat Two Primary School Teachers' Mathematical Knowledge of Content, Students, and Teaching Practices relevant to Lakatos-style Investigation of Proof Tasks 2022 Dimitrios Deslis
Andreas J. Stylianides
Mateja Jamnik
+ Thor: Wielding Hammers to Integrate Language Models and Automated Theorem Provers 2022 Albert Q. Jiang
Wenda Li
Szymon Tworkowski
Konrad Czechowski
Tomasz Odrzygóźdź
Piotr Miłoś
Yuhuai Wu
Mateja Jamnik
+ Representational Systems Theory: A Unified Approach to Encoding, Analysing and Transforming Representations 2022 Daniel Raggi
Gem Stapleton
Mateja Jamnik
Aaron Stockdill
Grecia García García
Peter Cheng
+ Autoformalization with Large Language Models 2022 Yuhuai Wu
Albert Q. Jiang
Wenda Li
Markus N. Rabe
Charles Staats
Mateja Jamnik
Christian Szegedy
+ Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off 2022 Mateo Espinosa Zarlenga
Pietro Barbiero
Gabriele Ciravegna
Giuseppe Marra
Francesco Giannini
Michelangelo Diligenti
Zohreh Shams
Fŕed́eric Precioso
Stefano Melacci
Adrian Weller
+ Distributed representations of graphs for drug pair scoring 2022 Paul Scherer
Píetro Lió
Mateja Jamnik
+ Draft, Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs 2022 Albert Q. Jiang
Sean Welleck
Jin Zhou
Wenda Li
Jiacheng Liu
Mateja Jamnik
Timothée Lacroix
Yuhuai Wu
Guillaume Lample
+ GCondNet: A Novel Method for Improving Neural Networks on Small High-Dimensional Tabular Data 2022 Andrei Margeloiu
Nikola Simidjievski
Píetro Lió
Mateja Jamnik
+ Explainer Divergence Scores (EDS): Some Post-Hoc Explanations May be Effective for Detecting Unknown Spurious Correlations 2022 Shea Cardozo
Gabriel Islas Montero
Dmitry Kazhdan
Botty Dimanov
Maleakhi Wijaya
Mateja Jamnik
Píetro Lió
+ Discrete Lagrangian Neural Networks with Automatic Symmetry Discovery 2022 Yana Lishkova
Paul Scherer
Steffen Ridderbusch
Mateja Jamnik
Píetro Lió
Sina Ober‐Blöbaum
Christian Offen
+ Weight Predictor Network with Feature Selection for Small Sample Tabular Biomedical Data 2022 Andrei Margeloiu
Nikola Simidjievski
Píetro Lió
Mateja Jamnik
+ Encoding Concepts in Graph Neural Networks 2022 Lucie Charlotte Magister
Pietro Barbiero
Dmitry Kazhdan
Federico Siciliano
Gabriele Ciravegna
Fabrizio Silvestri
Mateja Jamnik
Píetro Lió
+ Efficient Decompositional Rule Extraction for Deep Neural Networks 2021 Mateo Espinosa Zarlenga
Zohreh Shams
Mateja Jamnik
+ PDF Chat Efficient Decompositional Rule Extraction for Deep Neural Networks 2021 Mateo Espinosa Zarlenga
Zohreh Shams
Mateja Jamnik
+ Failing Conceptually: Concept-Based Explanations of Dataset Shift. 2021 Maleakhi A. Wijaya
Dmitry Kazhdan
Botty Dimanov
Mateja Jamnik
+ Is Disentanglement all you need? Comparing Concept-based & Disentanglement Approaches 2021 Dmitry Kazhdan
Botty Dimanov
Helena Andrés-Terré
Mateja Jamnik
Píetro Lió
Adrian Weller
+ Do Concept Bottleneck Models Learn as Intended? 2021 Andrei Margeloiu
Matthew Ashman
Umang Bhatt
Yanzhi Chen
Mateja Jamnik
Adrian Weller
+ Failing Conceptually: Concept-Based Explanations of Dataset Shift 2021 Maleakhi A. Wijaya
Dmitry Kazhdan
Botty Dimanov
Mateja Jamnik
+ Efficient Decompositional Rule Extraction for Deep Neural Networks 2021 Mateo Espinosa Zarlenga
Zohreh Shams
Mateja Jamnik
+ Is Disentanglement all you need? Comparing Concept-based & Disentanglement Approaches 2021 Dmitry Kazhdan
Botty Dimanov
Helena Andrés-Terré
Mateja Jamnik
Píetro Lió
Adrian Weller
+ MEME: Generating RNN Model Explanations via Model Extraction. 2020 Dmitry Kazhdan
Botty Dimanov
Mateja Jamnik
Píetro Lió
+ Improving Interpretability in Medical Imaging Diagnosis using Adversarial Training. 2020 Andrei Margeloiu
Nikola Simidjievski
Mateja Jamnik
Adrian Weller
+ Using ontology embeddings for structural inductive bias in gene expression data analysis. 2020 Maja Trębacz
Zohreh Shams
Mateja Jamnik
Paul Scherer
Nikola Simidjievski
Helena Andrés-Terré
Píetro Lió
+ Pairwise Relations Discriminator for Unsupervised Raven's Progressive Matrices. 2020 Nicholas Quek Wei Kiat
Duo Wang
Mateja Jamnik
+ Exploring Structural Inductive Biases in Emergent Communication. 2020 Agnieszka Słowik
Abhinav Gupta
William L. Hamilton
Mateja Jamnik
Sean B. Holden
Christopher Pal
+ Structural Inductive Biases in Emergent Communication 2020 Agnieszka Słowik
Abhinav Gupta
William L. Hamilton
Mateja Jamnik
Sean B. Holden
Christopher Pal
+ Towards Graph Representation Learning in Emergent Communication 2020 Agnieszka Słowik
Abhinav Gupta
William L. Hamilton
Mateja Jamnik
Sean B. Holden
+ Probabilistic Dual Network Architecture Search on Graphs 2020 Yiren Zhao
Duo Wang
Xitong Gao
Robert Mullins
Píetro Lió
Mateja Jamnik
+ Extrapolatable Relational Reasoning With Comparators in Low-Dimensional Manifolds 2020 Duo Wang
Mateja Jamnik
Píetro Lió
+ Abstract Diagrammatic Reasoning with Multiplex Graph Networks 2020 Duo Wang
Mateja Jamnik
Píetro Lió
+ Learned Low Precision Graph Neural Networks 2020 Yiren Zhao
Duo Wang
Daniel Bates
Robert Mullins
Mateja Jamnik
Píetro Lió
+ Incorporating network based protein complex discovery into automated model construction 2020 Paul Scherer
Maja Trębacz
Nikola Simidjievski
Zohreh Shams
Helena Andrés-Terré
Píetro Lió
Mateja Jamnik
+ Now You See Me (CME): Concept-based Model Extraction 2020 Dmitry Kazhdan
Botty Dimanov
Mateja Jamnik
Píetro Lió
Adrian Weller
+ MEME: Generating RNN Model Explanations via Model Extraction 2020 Dmitry Kazhdan
Botty Dimanov
Mateja Jamnik
Píetro Lió
+ Using ontology embeddings for structural inductive bias in gene expression data analysis 2020 Maja Trębacz
Zohreh Shams
Mateja Jamnik
Paul Scherer
Nikola Simidjievski
Helena Andrés-Terré
Píetro Lió
+ Pairwise Relations Discriminator for Unsupervised Raven's Progressive Matrices 2020 Nicholas Quek Wei Kiat
Duo Wang
Mateja Jamnik
+ Structural Inductive Biases in Emergent Communication 2020 Agnieszka Słowik
Abhinav Gupta
William L. Hamilton
Mateja Jamnik
Sean B. Holden
Christopher Pal
+ Improving Interpretability in Medical Imaging Diagnosis using Adversarial Training 2020 Andrei Margeloiu
Nikola Simidjievski
Mateja Jamnik
Adrian Weller
+ PDF Chat A Common Type of Rigorous Proof that Resists Hilbert’s Programme 2019 Alan Bundy
Mateja Jamnik
+ Unsupervised and interpretable scene discovery with Discrete-Attend-Infer-Repeat 2019 Duo Wang
Mateja Jamnik
Píetro Lió
+ Bayesian Optimisation with Gaussian Processes for Premise Selection 2019 Agnieszka Słowik
Chaitanya Mangla
Mateja Jamnik
Sean B. Holden
Lawrence C. Paulson
+ Decoupling feature propagation from the design of graph auto-encoders 2019 Paul Scherer
Helena Andrés-Terré
Píetro Lió
Mateja Jamnik
+ PDF Chat Tactical Diagrammatic Reasoning 2017 Sven Linker
Jim Burton
Mateja Jamnik
+ Interactive visual machine learning in spreadsheets 2015 Advait Sarkar
Mateja Jamnik
Alan F. Blackwell
Martin Spott
+ Teach and try: A simple interaction technique for exploratory data modelling by end users 2014 Advait Sarkar
Alan F. Blackwell
Mateja Jamnik
Martin Spott
+ Combining Proofs of Higher-Order and First-Order Automated Theorem Provers 2005 Christoph Benzmüller
Volker Sorge
Mateja Jamnik
Manfred Kerber
+ Mathematical Reasoning with Diagrams 2001 Mateja Jamnik
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Inductive Representation Learning on Large Graphs 2017 William L. Hamilton
Rex Ying
Jure Leskovec
6
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
6
+ Scikit-learn: Machine Learning in Python 2012 Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
6
+ Categorical Reparameterization with Gumbel-Softmax 2016 Eric Jang
Shixiang Gu
Ben Poole
6
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
4
+ Towards Automatic Concept-based Explanations 2019 Amirata Ghorbani
James Wexler
James Zou
Been Kim
4
+ Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) 2017 Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
Fernanda Viégas
Rory Sayres
4
+ Semi-Supervised Classification with Graph Convolutional Networks 2016 Thomas Kipf
Max Welling
4
+ Concept Bottleneck Models 2020 Pang Wei Koh
Thao Nguyen
Yew Siang Tang
Stephen Mussmann
Emma Pierson
Been Kim
Percy Liang
4
+ Attention is All you Need 2017 Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Łukasz Kaiser
Illia Polosukhin
4
+ PDF Chat Concept whitening for interpretable image recognition 2020 Zhi Chen
Yijie Bei
Cynthia Rudin
3
+ EGG: a toolkit for research on Emergence of lanGuage in Games 2019 Eugene Kharitonov
Rahma Chaabouni
Diane Bouchacourt
Marco Baroni
3
+ A simple neural network module for relational reasoning 2017 Adam Santoro
David Raposo
David G. T. Barrett
Mateusz Malinowski
Razvan Pascanu
Peter Battaglia
Timothy Lillicrap
3
+ Capacity, Bandwidth, and Compositionality in Emergent Language Learning 2019 Cinjon Resnick
Abhinav Gupta
Jakob Foerster
Andrew M. Dai
Kyunghyun Cho
3
+ PDF Chat Building machines that learn and think like people 2016 Brenden M. Lake
Tomer Ullman
Joshua B. Tenenbaum
Samuel J. Gershman
3
+ The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables 2016 Chris J. Maddison
Andriy Mnih
Yee Whye Teh
3
+ Sequence to Sequence Learning with Neural Networks 2014 Ilya Sutskever
Oriol Vinyals
Quoc V. Le
3
+ Relational inductive biases, deep learning, and graph networks 2018 Peter Battaglia
Jessica B. Hamrick
Victor Bapst
Álvaro Sánchez‐González
Vinícius Zambaldi
Mateusz Malinowski
Andrea Tacchetti
David Raposo
Adam Santoro
Ryan Faulkner
3
+ Semi-Supervised Classification with Graph Convolutional Networks 2016 Thomas Kipf
Max Welling
3
+ On Completeness-aware Concept-Based Explanations in Deep Neural Networks 2019 Chih‐Kuan Yeh
Been Kim
Sercan Ö. Arık
Chun‐Liang Li
Tomas Pfister
Pradeep Ravikumar
3
+ Neural Message Passing for Quantum Chemistry 2017 Justin Gilmer
Samuel S. Schoenholz
Patrick Riley
Oriol Vinyals
George E. Dahl
3
+ Explainable machine learning in deployment 2020 Umang Bhatt
Alice Xiang
Shubham Sharma
Adrian Weller
Ankur Taly
Yunhan Jia
Joydeep Ghosh
Ruchir Puri
José M. F. Moura
Peter Eckersley
3
+ PDF Chat Representation Learning: A Review and New Perspectives 2013 Yoshua Bengio
Aaron Courville
P. M. Durai Raj Vincent
3
+ The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision 2019 Jiayuan Mao
Chuang Gan
Pushmeet Kohli
Joshua B. Tenenbaum
Jiajun Wu
3
+ Deep Graph Library: Towards Efficient and Scalable Deep Learning on Graphs 2019 Minjie Wang
Lingfan Yu
Da Zheng
Quan Gan
Yu Gai
Zihao Ye
Mufei Li
Jinjing Zhou
Qi Huang
Chao Ma
2
+ Learning Perceptual Inference by Contrasting 2019 Chi Zhang
Baoxiong Jia
Feng Gao
Yixin Zhu
Hongjing Lu
Song‐Chun Zhu
2
+ Auto-GNN: Neural Architecture Search of Graph Neural Networks 2019 Kaixiong Zhou
Qingquan Song
Xiao Huang
Xia Hu
2
+ PDF Chat Natural Language Does Not Emerge ‘Naturally’ in Multi-Agent Dialog 2017 Satwik Kottur
José M. F. Moura
Stefan Lee
Dhruv Batra
2
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
2
+ PDF Chat Enhancing Transparency and Control When Drawing Data-Driven Inferences About Individuals 2017 Daizhuo Chen
Samuel P. Fraiberger
Robert Moakler
Foster Provost
2
+ On the Variance of the Adaptive Learning Rate and Beyond 2019 Liyuan Liu
Haoming Jiang
Pengcheng He
Weizhu Chen
Xiaodong Liu
Jianfeng Gao
Jiawei Han
2
+ CLUTRR: A Diagnostic Benchmark for Inductive Reasoning from Text 2019 Koustuv Sinha
Shagun Sodhani
Jin Song Dong
Joëlle Pineau
William L. Hamilton
2
+ Weakly-Supervised Disentanglement Without Compromises 2020 Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
2
+ The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables 2016 Chris J. Maddison
Andriy Mnih
Yee Whye Teh
2
+ Revisiting Semi-Supervised Learning with Graph Embeddings 2016 Zhilin Yang
William W. Cohen
Ruslan Salakhutdinov
2
+ Explaining Classifiers with Causal Concept Effect (CaCE) 2019 Yash Goyal
Amir Feder
Uri Shalit
Been Kim
2
+ VQA: Visual Question Answering 2015 Aishwarya Agrawal
Jiasen Lu
Stanislaw Antol
Margaret Mitchell
C. Lawrence Zitnick
Dhruv Batra
Devi Parikh
2
+ PDF Chat VQA: Visual Question Answering 2015 Stanislaw Antol
Aishwarya Agrawal
Jiasen Lu
Margaret Mitchell
Dhruv Batra
C. Lawrence Zitnick
Devi Parikh
2
+ PDF Chat Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization 2017 Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
2
+ Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding 2018 Kexin Yi
Jia-Jun Wu
Chuang Gan
Antonio Torralba
Pushmeet Kohli
Joshua B. Tenenbaum
2
+ PDF Chat How agents see things: On visual representations in an emergent language game 2018 Diane Bouchacourt
Marco Baroni
2
+ Improving Generalization for Abstract Reasoning Tasks Using Disentangled Feature Representations 2018 Xander Steenbrugge
Sam Leroux
Tim Verbelen
Bart Dhoedt
2
+ Towards Gene Expression Convolutions using Gene Interaction Graphs 2018 Francis Dutil
Joseph Cohen
Martin Weiß
Georgy Derevyanko
Yoshua Bengio
2
+ Fast Graph Representation Learning with PyTorch Geometric 2019 Matthias Fey
Jan Eric Lenssen
2
+ MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 2017 Andrew Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
Marco Andreetto
Hartwig Adam
2
+ Neural Architecture Search with Reinforcement Learning 2016 Barret Zoph
Quoc V. Le
2
+ Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation 2014 Kyunghyun Cho
Bart van Merriënboer
Çaǧlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
2
+ SmoothGrad: removing noise by adding noise 2017 Daniel Smilkov
Nikhil Thorat
Been Kim
Fernanda Viégas
Martin Wattenberg
2
+ PDF Chat CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning 2017 Justin Johnson
Bharath Hariharan
Laurens van der Maaten
Li Fei-Fei
C. Lawrence Zitnick
Ross Girshick
2
+ PDF Chat Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification 2015 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2