Matthew G. Perich

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Expressivity of Neural Networks with Random Weights and Learned Biases. 2024 Ezekiel Williams
Avery Hee-Woon Ryoo
Thomas Jiralerspong
Alexandre Payeur
Matthew G. Perich
Luca Mazzucato
Guillaume Lajoie
+ A Unified, Scalable Framework for Neural Population Decoding. 2023 Mehdi Azabou
Vinam Arora
Venkataramana Ganesh
Ximeng Mao
Santosh Nachimuthu
Michael J Mendelson
Blake A. Richards
Matthew G. Perich
Guillaume Lajoie
Eva L. Dyer
+ A Unified, Scalable Framework for Neural Population Decoding 2023 Mehdi Azabou
Vinam Arora
Venkataramana Ganesh
Ximeng Mao
Santosh Nachimuthu
Michael Mendelson
Blake A. Richards
Matthew G. Perich
Guillaume Lajoie
Eva L. Dyer
+ Robust alignment of cross-session recordings of neural population activity by behaviour via unsupervised domain adaptation 2022 Justin Jude
Matthew G. Perich
Lee E. Miller
Matthias H. Hennig
+ Capturing cross-session neural population variability through self-supervised identification of consistent neuron ensembles 2022 Justin Jude
Matthew G. Perich
Lee E. Miller
Matthias H. Hennig
+ Targeted Neural Dynamical Modeling 2021 Cole Hurwitz
Akash Srivastava
Kai Xu
Justin Jude
Matthew G. Perich
Lee E. Miller
Matthias H. Hennig
+ Targeted Neural Dynamical Modeling 2021 Cole Hurwitz
Akash Srivastava
Kai Xu
Justin Jude
Matthew G. Perich
Lee E. Miller
Matthias H. Hennig
+ Targeted Neural Dynamical Modeling 2021 Cole Hurwitz
Akash Srivastava
Kai Xu
Justin Jude
Matthew G. Perich
Lee E. Miller
Matthias H. Hennig
+ PDF Chat Machine Learning for Neural Decoding 2020 Joshua I. Glaser
Ari S. Benjamin
Raeed H. Chowdhury
Matthew G. Perich
Lee E. Miller
Konrad P. Körding
+ Machine learning for neural decoding 2017 Joshua I. Glaser
Ari S. Benjamin
Raeed H. Chowdhury
Matthew G. Perich
Lee E. Miller
Konrad P. Körding
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ The Elements of Statistical Learning 2001 Trevor Hastie
J. Friedman
Robert Tibshirani
1
+ PDF Chat Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification 2015 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+ PDF Chat Causal interpretation rules for encoding and decoding models in neuroimaging 2015 Sebastian Weichwald
Timm Meyer
Ozan Özdenizci
Bernhard Schölkopf
Tonio Ball
Moritz Grosse‐Wentrup
1
+ PDF Chat No free lunch theorems for optimization 1997 David H. Wolpert
William G. Macready
1
+ Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation 2014 Kyunghyun Cho
Bart van Merriënboer
Çaǧlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
1
+ Demixed principal component analysis of neural population data 2016 Dmitry Kobak
Wieland Brendel
Christos Constantinidis
Claudia E. Feierstein
Ádám Kepecs
Zachary F. Mainen
Xue-Lian Qi
Ranulfo Romo
Naoshige Uchida
Christian K. Machens
1
+ LFADS - Latent Factor Analysis via Dynamical Systems 2016 David Sussillo
Rafał Józefowicz
L. F. Abbott
Chethan Pandarinath
1
+ Making brain–machine interfaces robust to future neural variability 2016 David Sussillo
Sergey D. Stavisky
Jonathan C. Kao
Stephen I. Ryu
Krishna V. Shenoy
1
+ Isolating Sources of Disentanglement in Variational Autoencoders 2018 Ricky T. Q. Chen
Xuechen Li
Roger Grosse
David Duvenaud
1
+ PDF Chat The roles of supervised machine learning in systems neuroscience 2019 Joshua I. Glaser
Ari S. Benjamin
Roozbeh Farhoodi
Konrad P. Körding
1
+ PDF Chat Interpreting encoding and decoding models 2019 Nikolaus Kriegeskorte
Pamela K. Douglas
1
+ The Roles of Supervised Machine Learning in Systems Neuroscience 2018 Joshua I. Glaser
Ari S. Benjamin
Roozbeh Farhoodi
Konrad P. Körding
1
+ Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks 2019 Qi She
Anqi Wu
1
+ Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modelling 2020 Akash Srivastava
Yamini Bansal
Yukun Ding
Cole Hurwitz
Kai Xu
Bernhard Egger
Prasanna Sattigeri
Josh Tenenbaum
David Cox
Dan Gutfreund
1
+ Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-VAE 2020 Ding Zhou
Xue-Xin Wei
1
+ PDF Chat Building population models for large-scale neural recordings: Opportunities and pitfalls 2021 Cole Hurwitz
Nina Kudryashova
Arno Onken
Matthias H. Hennig
1
+ Ridge Regression: Biased Estimation for Nonorthogonal Problems 1970 Arthur E. Hoerl
Robert W. Kennard
1