Projects
Reading
People
Chat
SU\G
(đž)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Jan Macdonald
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
PDF
Chat
Let's enhance: A deep learning approach to extreme deblurring of text images
2023
Theophil Trippe
Martin Genzel
Jan Macdonald
Maximilian MĂ€rz
+
PDF
Chat
Solving Inverse Problems With Deep Neural Networks â Robustness Included?
2022
Martin Genzel
Jan Macdonald
Maximilian MĂ€rz
+
Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning
2022
Martin Genzel
Ingo GĂŒhring
Jan Macdonald
Maximilian MĂ€rz
+
Let's Enhance: A Deep Learning Approach to Extreme Deblurring of Text Images
2022
Theophil Trippe
Martin Genzel
Jan Macdonald
Maximilian MĂ€rz
+
PDF
Chat
A Complete Characterisation of ReLU-Invariant Distributions
2021
Jan Macdonald
Stephan WĂ€ldchen
+
Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings.
2021
Jan Macdonald
Mathieu Besançon
Sebastian Pokutta
+
AAPM DL-Sparse-View CT Challenge Submission Report: Designing an Iterative Network for Fanbeam-CT with Unknown Geometry.
2021
Martin Genzel
Jan Macdonald
Maximilian MĂ€rz
+
PDF
Chat
Interval Neural Networks as Instability Detectors for Image Reconstructions
2021
Jan Macdonald
Maximilian MĂ€rz
Luis Oala
Wojciech Samek
+
Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings
2021
Jan Macdonald
Mathieu Besançon
Sebastian Pokutta
+
AAPM DL-Sparse-View CT Challenge Submission Report: Designing an Iterative Network for Fanbeam-CT with Unknown Geometry
2021
Martin Genzel
Jan Macdonald
Maximilian MĂ€rz
+
Interval Neural Networks: Uncertainty Scores
2020
Luis Oala
Cosmas HeiĂ
Jan Macdonald
Maximilian MĂ€rz
Wojciech Samek
Gitta Kutyniok
+
Solving Inverse Problems With Deep Neural Networks -- Robustness Included?
2020
Martin Genzel
Jan Macdonald
Maximilian MĂ€rz
+
Interval Neural Networks as Instability Detectors for Image Reconstructions
2020
Jan Macdonald
Maximilian MĂ€rz
Luis Oala
Wojciech Samek
+
A Rate-Distortion Framework for Explaining Neural Network Decisions.
2019
Jan Macdonald
Stephan WĂ€ldchen
Sascha Hauch
Gitta Kutyniok
+
The Computational Complexity of Understanding Network Decisions.
2019
Stephan WĂ€ldchen
Jan Macdonald
Sascha Hauch
Gitta Kutyniok
+
The Oracle of DLphi
2019
Dominik Alfke
Weston Baines
Jan Blechschmidt
Mauricio J. del Razo Sarmina
Amnon Drory
Dennis ElbrÀchter
Nando Farchmin
Matteo Gambara
Silke Glas
Philipp Grohs
+
A Rate-Distortion Framework for Explaining Neural Network Decisions
2019
Jan Macdonald
Stephan WĂ€ldchen
Sascha Hauch
Gitta Kutyniok
+
The Computational Complexity of Understanding Network Decisions
2019
Stephan WĂ€ldchen
Jan Macdonald
Sascha Hauch
Gitta Kutyniok
+
The Oracle of DLphi
2019
Dominik Alfke
Weston Baines
Jan Blechschmidt
Mauricio J. del Razo Sarmina
Amnon Drory
Dennis ElbrÀchter
Nando Farchmin
Matteo Gambara
Silke Glas
Philipp Grohs
+
Efficient Numerical Optimization For Susceptibility Artifact Correction Of EPI-MRI
2016
Jan Macdonald
Lars Ruthotto
Common Coauthors
Coauthor
Papers Together
Maximilian MĂ€rz
10
Gitta Kutyniok
7
Martin Genzel
7
Stephan WĂ€ldchen
5
Sascha Hauch
4
Luis Oala
3
Wojciech Samek
3
Amnon Drory
2
Rafael Reisenhofer
2
Melanie Weber
2
Gregory Naisat
2
Philipp Petersen
2
Christian KĂŒmmerle
2
Sebastian Pokutta
2
Dennis ElbrÀchter
2
Danijel Kivaranovic
2
Jan Blechschmidt
2
Philipp Trunschke
2
Sebastian Lunz
2
Johannes von Lindheim
2
Jun-Da Sheng
2
Mathieu Besançon
2
Peter Hinz
2
Matteo Gambara
2
Nando Farchmin
2
Dominik Alfke
2
Ariel Neufeld
2
Ryan Malthaner
2
Silke Glas
2
Theophil Trippe
2
Philipp Grohs
2
Laura Thesing
2
David S. Weber
2
Mauricio J. del Razo Sarmina
2
Weston Baines
2
Cosmas HeiĂ
1
Lars Ruthotto
1
Ingo GĂŒhring
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
PDF
Chat
Deep Convolutional Neural Network for Inverse Problems in Imaging
2017
Kyong Hwan Jin
Michael T. McCann
Emmanuel Froustey
Michaël Unser
4
+
PDF
Chat
MoDL: Model-Based Deep Learning Architecture for Inverse Problems
2018
Hemant Kumar Aggarwal
Merry Mani
Mathews Jacob
3
+
PDF
Chat
On instabilities of deep learning in image reconstruction and the potential costs of AI
2020
Vegard Antun
Francesco Renna
Clarice Poon
Ben Adcock
Anders C. Hansen
3
+
PDF
Chat
Solving inverse problems using data-driven models
2019
Simon Arridge
Peter MaaĂ
Ozan Ăktem
CarolaâBibiane Schönlieb
3
+
PDF
Chat
Learned Primal-Dual Reconstruction
2018
Jonas Adler
Ozan Ăktem
3
+
PDF
Chat
Learning the invisible: a hybrid deep learning-shearlet framework for limited angle computed tomography
2019
Tatiana A. Bubba
Gitta Kutyniok
Matti Lassas
Maximilian MĂ€rz
Wojciech Samek
Samuli Siltanen
Vignesh Srinivasan
3
+
A deep convolutional neural network using directional wavelets for lowâdose Xâray CT reconstruction
2017
EunâHee Kang
Junhong Min
Jong Chul Ye
3
+
PDF
Chat
Densely Connected Convolutional Networks
2017
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
2
+
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
2013
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
2
+
PDF
Chat
Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network
2017
Hu Chen
Yi Zhang
Mannudeep K. Kalra
Feng Lin
Yang Chen
Peixi Liao
Jiliu Zhou
Ge Wang
2
+
PDF
Chat
Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge
2020
Florian Knöll
Tullie Murrell
Anuroop Sriram
Nafissa Yakubova
Jure Ćœbontar
Michael Rabbat
Aaron Defazio
Matthew J. Muckley
Daniel K. Sodickson
C. Lawrence Zitnick
2
+
Deep Learning Techniques for Inverse Problems in Imaging
2020
Greg Ongie
Ajil Jalal
Christopher A. Metzler
Richard G. Baraniuk
Alexandros G. Dimakis
Rebecca Willett
2
+
Very Deep Convolutional Networks for Large-Scale Image Recognition
2014
Karen Simonyan
Andrew Zisserman
2
+
$ÎŁ$-net: Systematic Evaluation of Iterative Deep Neural Networks for Fast Parallel MR Image Reconstruction
2019
Kerstin Hammernik
Jo Schlemper
Chen Qin
Jinming Duan
Ronald M. Summers
Daniel Rueckert
2
+
PDF
Chat
State-of-the-art Machine Learning MRI Reconstruction in 2020: Results of the Second fastMRI Challenge
2020
Matthew J. Muckley
Bruno Riemenschneider
Alireza Radmanesh
Sunwoo Kim
Geunu Jeong
Jingyu Ko
Yohan Jun
Hyungseob Shin
Dosik Hwang
Mahmoud Mostapha
2
+
PDF
Chat
Lightweight Probabilistic Deep Networks
2018
Jochen Gast
Stefan Roth
2
+
The troublesome kernel: why deep learning for inverse problems is typically unstable.
2020
Nina Maria Gottschling
Vegard Antun
Ben Adcock
Anders C. Hansen
2
+
PDF
Chat
Solving Inverse Problems With Deep Neural Networks â Robustness Included?
2022
Martin Genzel
Jan Macdonald
Maximilian MĂ€rz
2
+
PDF
Chat
The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation
2017
Simon JĂ©gou
Michal Drozdzal
David VĂĄzquez
Adriana Romero
Yoshua Bengio
2
+
Optimal Mass Transport for Registration and Warping
2004
Steven Haker
Lei Zhu
Allen Tannenbaum
Sigurd Angenent
1
+
Approximation by superposition of sigmoidal and radial basis functions
1992
H. N. Mhaskar
Charles A. Micchelli
1
+
On Alternating Direction Methods of Multipliers: A Historical Perspective
2014
Roland Glowinski
1
+
A tutorial on conformal prediction
2007
Glenn Shafer
Vladimir Vovk
1
+
PDF
Chat
Living on the edge: phase transitions in convex programs with random data
2014
Dennis Amelunxen
Martin Lötz
Michael B. McCoy
Joel A. Tropp
1
+
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
2013
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
1
+
Comprehensive Review of Neural Network-Based Prediction Intervals and New Advances
2011
Abbas Khosravi
Saeid Nahavandi
Douglas Creighton
Amir F. Atiya
1
+
PDF
Chat
Deep Residual Learning for Image Recognition
2016
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+
Global Convergence of ADMM in Nonconvex Nonsmooth Optimization
2015
Yu Wang
Wotao Yin
Jinshan Zeng
1
+
PDF
Chat
Evaluating the Visualization of What a Deep Neural Network Has Learned
2016
Wojciech Samek
Alexander Binder
Grégoire Montavon
Sebastian Lapuschkin
KlausâRobert MĂŒller
1
+
PDF
Chat
Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problÚmes de Dirichlet non linéaires
1975
Roland Glowinski
A. Marroco
1
+
Learning Phrase Representations using RNN EncoderâDecoder for Statistical Machine Translation
2014
Kyunghyun Cho
Bart van Merriënboer
Ăaǧlar GĂŒlçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
1
+
Statistical and Computational Inverse Problems
2006
Faming Liang
Jianhua Huang
1
+
PDF
Chat
Image Super-Resolution Using Deep Convolutional Networks
2015
Chao Dong
Chen Change Loy
Kaiming He
Xiaoou Tang
1
+
PDF
Chat
Compressive Classification and the Rare Eclipse Problem
2017
Afonso S. Bandeira
Dustin G. Mixon
Benjamin Recht
1
+
PDF
Chat
Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
2006
Emmanuel J. CandĂšs
Justin Romberg
Terence Tao
1
+
PDF
Chat
Speech recognition with deep recurrent neural networks
2013
Alex Graves
Abdelrahman Mohamed
Geoffrey E. Hinton
1
+
PDF
Chat
Superreplication under volatility uncertainty for measurable claims
2013
Ariel Neufeld
Marcel Nutz
1
+
PDF
Chat
DeepPose: Human Pose Estimation via Deep Neural Networks
2014
Alexander Toshev
Christian Szegedy
1
+
PDF
Chat
Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring
2017
Seungjun Nah
Tae Hyun Kim
Kyoung Mu Lee
1
+
Training with Noise is Equivalent to Tikhonov Regularization
1995
Chris Bishop
1
+
PDF
Chat
Deconvolution in Astronomy: A Review
2002
JeanâLuc Starck
Eric Pantin
Fionn Murtagh
1
+
Distilling the Knowledge in a Neural Network
2015
Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
1
+
A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction
2017
Jo Schlemper
José Caballero
Joseph V. Hajnal
Anthony N. Price
Daniel Rueckert
1
+
Depth-Width Tradeoffs in Approximating Natural Functions with Neural Networks
2016
Itay Safran
Ohad Shamir
1
+
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
2017
Alex Kendall
Yarin Gal
1
+
Learning a variational network for reconstruction of accelerated MRI data
2017
Kerstin Hammernik
Teresa Klatzer
Erich Kobler
Michael P. Recht
Daniel K. Sodickson
Thomas Pock
Florian Knöll
1
+
Learning Important Features Through Propagating Activation Differences
2017
Avanti Shrikumar
Peyton Greenside
Anshul Kundaje
1
+
PDF
Chat
Image reconstruction by domain-transform manifold learning
2018
Bo Zhu
Jeremiah Zhe Liu
Stephen Cauley
Bruce R. Rosen
Matthew S. Rosen
1
+
Recurrent Inference Machines for Solving Inverse Problems
2017
Patrick Putzky
Max Welling
1
+
PDF
Chat
Error bounds for approximations with deep ReLU networks
2017
Dmitry Yarotsky
1