Jan Macdonald

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Let's enhance: A deep learning approach to extreme deblurring of text images 2023 Theophil Trippe
Martin Genzel
Jan Macdonald
Maximilian MĂ€rz
+ PDF Chat Solving Inverse Problems With Deep Neural Networks – Robustness Included? 2022 Martin Genzel
Jan Macdonald
Maximilian MĂ€rz
+ Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning 2022 Martin Genzel
Ingo GĂŒhring
Jan Macdonald
Maximilian MĂ€rz
+ Let's Enhance: A Deep Learning Approach to Extreme Deblurring of Text Images 2022 Theophil Trippe
Martin Genzel
Jan Macdonald
Maximilian MĂ€rz
+ PDF Chat A Complete Characterisation of ReLU-Invariant Distributions 2021 Jan Macdonald
Stephan WĂ€ldchen
+ Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings. 2021 Jan Macdonald
Mathieu Besançon
Sebastian Pokutta
+ AAPM DL-Sparse-View CT Challenge Submission Report: Designing an Iterative Network for Fanbeam-CT with Unknown Geometry. 2021 Martin Genzel
Jan Macdonald
Maximilian MĂ€rz
+ PDF Chat Interval Neural Networks as Instability Detectors for Image Reconstructions 2021 Jan Macdonald
Maximilian MĂ€rz
Luis Oala
Wojciech Samek
+ Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings 2021 Jan Macdonald
Mathieu Besançon
Sebastian Pokutta
+ AAPM DL-Sparse-View CT Challenge Submission Report: Designing an Iterative Network for Fanbeam-CT with Unknown Geometry 2021 Martin Genzel
Jan Macdonald
Maximilian MĂ€rz
+ Interval Neural Networks: Uncertainty Scores 2020 Luis Oala
Cosmas Heiß
Jan Macdonald
Maximilian MĂ€rz
Wojciech Samek
Gitta Kutyniok
+ Solving Inverse Problems With Deep Neural Networks -- Robustness Included? 2020 Martin Genzel
Jan Macdonald
Maximilian MĂ€rz
+ Interval Neural Networks as Instability Detectors for Image Reconstructions 2020 Jan Macdonald
Maximilian MĂ€rz
Luis Oala
Wojciech Samek
+ A Rate-Distortion Framework for Explaining Neural Network Decisions. 2019 Jan Macdonald
Stephan WĂ€ldchen
Sascha Hauch
Gitta Kutyniok
+ The Computational Complexity of Understanding Network Decisions. 2019 Stephan WĂ€ldchen
Jan Macdonald
Sascha Hauch
Gitta Kutyniok
+ The Oracle of DLphi 2019 Dominik Alfke
Weston Baines
Jan Blechschmidt
Mauricio J. del Razo Sarmina
Amnon Drory
Dennis ElbrÀchter
Nando Farchmin
Matteo Gambara
Silke Glas
Philipp Grohs
+ A Rate-Distortion Framework for Explaining Neural Network Decisions 2019 Jan Macdonald
Stephan WĂ€ldchen
Sascha Hauch
Gitta Kutyniok
+ The Computational Complexity of Understanding Network Decisions 2019 Stephan WĂ€ldchen
Jan Macdonald
Sascha Hauch
Gitta Kutyniok
+ The Oracle of DLphi 2019 Dominik Alfke
Weston Baines
Jan Blechschmidt
Mauricio J. del Razo Sarmina
Amnon Drory
Dennis ElbrÀchter
Nando Farchmin
Matteo Gambara
Silke Glas
Philipp Grohs
+ Efficient Numerical Optimization For Susceptibility Artifact Correction Of EPI-MRI 2016 Jan Macdonald
Lars Ruthotto
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Deep Convolutional Neural Network for Inverse Problems in Imaging 2017 Kyong Hwan Jin
Michael T. McCann
Emmanuel Froustey
Michaël Unser
4
+ PDF Chat MoDL: Model-Based Deep Learning Architecture for Inverse Problems 2018 Hemant Kumar Aggarwal
Merry Mani
Mathews Jacob
3
+ PDF Chat On instabilities of deep learning in image reconstruction and the potential costs of AI 2020 Vegard Antun
Francesco Renna
Clarice Poon
Ben Adcock
Anders C. Hansen
3
+ PDF Chat Solving inverse problems using data-driven models 2019 Simon Arridge
Peter Maaß
Ozan Öktem
Carola‐Bibiane Schönlieb
3
+ PDF Chat Learned Primal-Dual Reconstruction 2018 Jonas Adler
Ozan Öktem
3
+ PDF Chat Learning the invisible: a hybrid deep learning-shearlet framework for limited angle computed tomography 2019 Tatiana A. Bubba
Gitta Kutyniok
Matti Lassas
Maximilian MĂ€rz
Wojciech Samek
Samuli Siltanen
Vignesh Srinivasan
3
+ A deep convolutional neural network using directional wavelets for low‐dose X‐ray CT reconstruction 2017 Eun‐Hee Kang
Junhong Min
Jong Chul Ye
3
+ PDF Chat Densely Connected Convolutional Networks 2017 Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
2
+ Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 2013 Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
2
+ PDF Chat Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network 2017 Hu Chen
Yi Zhang
Mannudeep K. Kalra
Feng Lin
Yang Chen
Peixi Liao
Jiliu Zhou
Ge Wang
2
+ PDF Chat Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge 2020 Florian Knöll
Tullie Murrell
Anuroop Sriram
Nafissa Yakubova
Jure Ćœbontar
Michael Rabbat
Aaron Defazio
Matthew J. Muckley
Daniel K. Sodickson
C. Lawrence Zitnick
2
+ Deep Learning Techniques for Inverse Problems in Imaging 2020 Greg Ongie
Ajil Jalal
Christopher A. Metzler
Richard G. Baraniuk
Alexandros G. Dimakis
Rebecca Willett
2
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
2
+ $ÎŁ$-net: Systematic Evaluation of Iterative Deep Neural Networks for Fast Parallel MR Image Reconstruction 2019 Kerstin Hammernik
Jo Schlemper
Chen Qin
Jinming Duan
Ronald M. Summers
Daniel Rueckert
2
+ PDF Chat State-of-the-art Machine Learning MRI Reconstruction in 2020: Results of the Second fastMRI Challenge 2020 Matthew J. Muckley
Bruno Riemenschneider
Alireza Radmanesh
Sunwoo Kim
Geunu Jeong
Jingyu Ko
Yohan Jun
Hyungseob Shin
Dosik Hwang
Mahmoud Mostapha
2
+ PDF Chat Lightweight Probabilistic Deep Networks 2018 Jochen Gast
Stefan Roth
2
+ The troublesome kernel: why deep learning for inverse problems is typically unstable. 2020 Nina Maria Gottschling
Vegard Antun
Ben Adcock
Anders C. Hansen
2
+ PDF Chat Solving Inverse Problems With Deep Neural Networks – Robustness Included? 2022 Martin Genzel
Jan Macdonald
Maximilian MĂ€rz
2
+ PDF Chat The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation 2017 Simon JĂ©gou
Michal Drozdzal
David VĂĄzquez
Adriana Romero
Yoshua Bengio
2
+ Optimal Mass Transport for Registration and Warping 2004 Steven Haker
Lei Zhu
Allen Tannenbaum
Sigurd Angenent
1
+ Approximation by superposition of sigmoidal and radial basis functions 1992 H. N. Mhaskar
Charles A. Micchelli
1
+ On Alternating Direction Methods of Multipliers: A Historical Perspective 2014 Roland Glowinski
1
+ A tutorial on conformal prediction 2007 Glenn Shafer
Vladimir Vovk
1
+ PDF Chat Living on the edge: phase transitions in convex programs with random data 2014 Dennis Amelunxen
Martin Lötz
Michael B. McCoy
Joel A. Tropp
1
+ Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 2013 Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
1
+ Comprehensive Review of Neural Network-Based Prediction Intervals and New Advances 2011 Abbas Khosravi
Saeid Nahavandi
Douglas Creighton
Amir F. Atiya
1
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+ Global Convergence of ADMM in Nonconvex Nonsmooth Optimization 2015 Yu Wang
Wotao Yin
Jinshan Zeng
1
+ PDF Chat Evaluating the Visualization of What a Deep Neural Network Has Learned 2016 Wojciech Samek
Alexander Binder
Grégoire Montavon
Sebastian Lapuschkin
Klaus‐Robert MĂŒller
1
+ PDF Chat Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problÚmes de Dirichlet non linéaires 1975 Roland Glowinski
A. Marroco
1
+ Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation 2014 Kyunghyun Cho
Bart van Merriënboer
Çaǧlar GĂŒlçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
1
+ Statistical and Computational Inverse Problems 2006 Faming Liang
Jianhua Huang
1
+ PDF Chat Image Super-Resolution Using Deep Convolutional Networks 2015 Chao Dong
Chen Change Loy
Kaiming He
Xiaoou Tang
1
+ PDF Chat Compressive Classification and the Rare Eclipse Problem 2017 Afonso S. Bandeira
Dustin G. Mixon
Benjamin Recht
1
+ PDF Chat Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information 2006 Emmanuel J. CandĂšs
Justin Romberg
Terence Tao
1
+ PDF Chat Speech recognition with deep recurrent neural networks 2013 Alex Graves
Abdelrahman Mohamed
Geoffrey E. Hinton
1
+ PDF Chat Superreplication under volatility uncertainty for measurable claims 2013 Ariel Neufeld
Marcel Nutz
1
+ PDF Chat DeepPose: Human Pose Estimation via Deep Neural Networks 2014 Alexander Toshev
Christian Szegedy
1
+ PDF Chat Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring 2017 Seungjun Nah
Tae Hyun Kim
Kyoung Mu Lee
1
+ Training with Noise is Equivalent to Tikhonov Regularization 1995 Chris Bishop
1
+ PDF Chat Deconvolution in Astronomy: A Review 2002 Jean‐Luc Starck
Eric Pantin
Fionn Murtagh
1
+ Distilling the Knowledge in a Neural Network 2015 Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
1
+ A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction 2017 Jo Schlemper
José Caballero
Joseph V. Hajnal
Anthony N. Price
Daniel Rueckert
1
+ Depth-Width Tradeoffs in Approximating Natural Functions with Neural Networks 2016 Itay Safran
Ohad Shamir
1
+ What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? 2017 Alex Kendall
Yarin Gal
1
+ Learning a variational network for reconstruction of accelerated MRI data 2017 Kerstin Hammernik
Teresa Klatzer
Erich Kobler
Michael P. Recht
Daniel K. Sodickson
Thomas Pock
Florian Knöll
1
+ Learning Important Features Through Propagating Activation Differences 2017 Avanti Shrikumar
Peyton Greenside
Anshul Kundaje
1
+ PDF Chat Image reconstruction by domain-transform manifold learning 2018 Bo Zhu
Jeremiah Zhe Liu
Stephen Cauley
Bruce R. Rosen
Matthew S. Rosen
1
+ Recurrent Inference Machines for Solving Inverse Problems 2017 Patrick Putzky
Max Welling
1
+ PDF Chat Error bounds for approximations with deep ReLU networks 2017 Dmitry Yarotsky
1