Pierre‐Yves Bienvenu

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Realisability of simultaneous density constraints for sets of integers 2025 Pierre‐Yves Bienvenu
+ PDF Chat Intersective sets for sparse sets of integers 2024 Pierre‐Yves Bienvenu
John T. Griesmer
Anh N. Le
Thái Hoàng Lê
+ On algebraic properties of power monoids of numerical monoids 2024 Pierre‐Yves Bienvenu
Alfred Geroldinger
+ Intersective sets for sparse sets of integers 2024 Pierre‐Yves Bienvenu
John T. Griesmer
Anh N. Le
Thái Hoàng Lê
+ PDF Chat Metric decomposability theorems on sets of integers 2023 Pierre‐Yves Bienvenu
+ PDF Chat On additive bases in infinite abelian semigroups 2023 Pierre‐Yves Bienvenu
Benjamin Girard
Thai Le
+ PDF Chat A transference principle for systems of linear equations, and applications to almost twin primes 2023 Pierre‐Yves Bienvenu
Xuancheng Shao
Joni Teräväinen
+ PDF Chat A transference principle for systems of linear equations, and applications to almost twin primes 2023 Pierre‐Yves Bienvenu
Xuancheng Shao
Joni Teräväinen
+ PDF Chat Kneser’s theorem in -finite abelian groups 2022 Pierre‐Yves Bienvenu
François Hennecart
+ On algebraic properties of power monoids of numerical monoids 2022 Pierre‐Yves Bienvenu
Alfred Geroldinger
+ PDF Chat Kneser's Theorem in σ-finite Abelian groups 2021 Pierre‐Yves Bienvenu
François Hennecart
+ A transference principle for systems of linear equations, and applications to almost twin primes 2021 Pierre‐Yves Bienvenu
Xuancheng Shao
Joni Teräväinen
+ On additive bases in infinite abelian semigroups 2020 Pierre‐Yves Bienvenu
Benjamin Girard
Thai Le
+ PDF Chat On the density or measure of sets and their sumsets in the integers or the circle 2019 Pierre‐Yves Bienvenu
François Hennecart
+ Kneser's Theorem in $\sigma$-finite Abelian groups. 2019 Pierre‐Yves Bienvenu
François Hennecart
+ On the density or measure of sets and their sumsets in the integers or the circle 2019 Pierre‐Yves Bienvenu
François Hennecart
+ PDF Chat A note on the set A(A + A) 2019 Pierre‐Yves Bienvenu
François Hennecart
Ilya D. Shkredov
+ A note on the bilinear Bogolyubov theorem: Transverse and bilinear sets 2019 Pierre‐Yves Bienvenu
Diego González-Sánchez
Ángel Martínez
+ PDF Chat Asymptotics for some polynomial patterns in the primes 2019 Pierre‐Yves Bienvenu
+ PDF Chat LINEAR AND QUADRATIC UNIFORMITY OF THE MÖBIUS FUNCTION OVER 2019 Pierre‐Yves Bienvenu
Thai Le
+ On the density or measure of sets and their sumsets in the integers or the circle 2019 Pierre‐Yves Bienvenu
François Hennecart
+ PDF Chat A bilinear Bogolyubov theorem 2018 Pierre‐Yves Bienvenu
Thái Hoàng Lê
+ A note on the Bilinear Bogolyubov Theorem: Transverse and bilinear sets 2018 Pierre‐Yves Bienvenu
Diego González-Sánchez
Ángel D. Martínez
+ A note on the Bilinear Bogolyubov Theorem: Transverse and bilinear sets 2018 Pierre‐Yves Bienvenu
Diego González-Sánchez
Ángel D. Martínez
+ A bilinear Bogolyubov theorem 2017 Pierre‐Yves Bienvenu
Thai Le
+ PDF Chat Polynomial equations in Fq[t] 2017 Pierre‐Yves Bienvenu
+ Polynomial equations in function fields 2017 Pierre‐Yves Bienvenu
+ Linear and quadratic uniformity of the Möbius function over $\mathbb{F}_q[t]$ 2017 Pierre‐Yves Bienvenu
Thái Hoàng Lê
+ A bilinear Bogolyubov theorem 2017 Pierre‐Yves Bienvenu
Thái Hoàng Lê
+ A higher-dimensional Siegel-Walfisz theorem 2016 Pierre‐Yves Bienvenu
+ A higher-dimensional Siegel-Walfisz theorem 2016 Pierre‐Yves Bienvenu
+ Asymptotics for some polynomial patterns in the primes 2015 Pierre‐Yves Bienvenu
+ Asymptotics for some polynomial patterns in the primes 2015 Pierre‐Yves Bienvenu
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat The Möbius function is strongly orthogonal to nilsequences 2012 Ben Green
Terence Tao
7
+ PDF Chat The primes contain arbitrarily long arithmetic progressions 2008 Benjamin Green
Terence Tao
6
+ PDF Chat Linear equations in primes 2010 Ben Green
Terence Tao
6
+ PDF Chat On the Bogolyubov–Ruzsa lemma 2012 Tom Sanders
4
+ PDF Chat AN INVERSE THEOREM FOR THE GOWERS $U^3(G)$ NORM 2008 Ben Green
Terence Tao
4
+ PDF Chat Dense clusters of primes in subsets 2016 James Maynard
3
+ PDF Chat The Green-Tao theorem: an exposition 2014 David Conlon
Jacob Fox
Yufei Zhao
3
+ Small-sum pairs for upper Banach density in countable abelian groups 2013 John T. Griesmer
3
+ Large independent sets in shift-invariant graphs 1987 Igor Kříž
3
+ PDF Chat An inverse theorem for the Gowers U^(s+1)[N]-norm 2012 Ben Green
Terence Tao
Tamar Ziegler
3
+ PDF Chat The primes contain arbitrarily long polynomial progressions 2008 Terence Tao
Tamar Ziegler
3
+ A bilinear Bogolyubov-Ruzsa lemma with poly-logarithmic bounds. 2018 Kaave Hosseini
Shachar Lovett
2
+ PDF Chat Green–Tao theorem in function fields 2011 Thái Hoàng Lê
2
+ ON SOME INFINITE SERIES INVOLVING ARITHMETICAL FUNCTIONS (II) 1937 H. Davenport
2
+ Exponential sums involving the Möbius function 1996 Tianrong Zhan
J.-Y. Liu
2
+ A bilinear version of Bogolyubov's theorem 2017 W. T. Gowers
Luka Milićević
2
+ A note on exponential-Möbius sums over<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">F</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">[</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy="false">]</mml:mo></mml:math> 2018 Sam Porritt
2
+ PDF Chat AN ASYMPTOTIC FOR THE NUMBER OF SOLUTIONS TO LINEAR EQUATIONS IN PRIME NUMBERS FROM SPECIFIED CHEBOTAREV CLASSES 2013 Daniel M. Kane
2
+ PDF Chat An Arithmetic Regularity Lemma, An Associated Counting Lemma, and Applications 2010 Ben Green
Terence Tao
2
+ PDF Chat A higher-dimensional Siegel–Walfisz theorem 2017 Pierre-Yves Bienvenu
2
+ Patterns of Primes in Arithmetic Progressions 2017 J. Pintz
2
+ Polynomial patterns in the primes 2016 Terence Tao
Tamar Ziegler
2
+ A note on character sums in finite fields 2017 Abhishek Bhowmick
Thai Le
Yuru Liu
2
+ Montréal notes on quadratic Fourier analysis 2007 Ben Green
2
+ PDF Chat On uniform distribution and the density of sum sets 1957 Bodo Volkmann
2
+ Ein metrischer Satz über Mengen ganzer Zahlen 1953 Eduard Wirsing
2
+ None 2002 Norbert Hegyvári
2
+ PDF Chat Vinogradov’s theorem with Fouvry–Iwaniec primes 2022 Lasse Grimmelt
2
+ PDF Chat The Chen primes contain arbitrarily long arithmetic progressions 2009 Zhou Bin-bin
2
+ Opera de Cribro 2010 John Friedlander
Henryk Iwaniec
2
+ PDF Chat Low-degree tests at large distances 2007 Alex Samorodnitsky
2
+ Structure Theorem for Multiple Addition and the Frobenius Problem 1996 Vsevolod F. Lev
2
+ PDF Chat Primes of the type φ(x, y)+A where φ is a quadratic form 1972 Henryk Iwaniec
2
+ PDF Chat A density version of Vinogradov's three primes theorem 2010 Hongze Li
Hao Pan
2
+ Narrow Progressions in the Primes 2015 Terence Tao
Tamar Ziegler
2
+ Exponential Sums Formed with the Möbius Function 1991 Roger C. Baker
G. Harman
2
+ A divisor problem 1930 E. C. Titchmarsh
2
+ PDF Chat A relative Szemerédi theorem 2015 David Conlon
Jacob Fox
Yufei Zhao
2
+ PDF Chat Quadratic uniformity of the Möbius function 2008 Ben Green
Terence Tao
2
+ PDF Chat Kneser’s theorem for upper Banach density 2006 Prerna Bihani
Renling Jin
2
+ PDF Chat The distribution of irreducibles in 𝐺𝐹[𝑞,𝑥] 1965 David R. Hayes
2
+ PDF Chat Waring's problem in function fields 2009 Yu-Ru Liu
Trevor D. Wooley
2
+ On solution-free sets for simultaneous quadratic and linear equations 2008 Matthew Lee Smith
2
+ Solution to the inverse problem for upper asymptotic density 2006 Renling Jin
2
+ Exponential sums involving the Möbius function 2016 Xiaoguang He
Bingrong Huang
2
+ Absch�tzung der asymptotischen Dichte von Summenmengen 1953 Martin Kneser
2
+ PDF Chat On arithmetic structures in dense sets of integers 2002 Ben Green
2
+ PDF Chat Uniformity norms, their weaker versions, and applications 2022 Pandelis Dodos
Vassilis Kanellopoulos
2
+ Double and triple sums modulo a prime 2007 Katalin Gyarmati
Sergeĭ Konyagin
Imre Z. Ruzsa
2
+ PDF Chat A bilinear Bogolyubov theorem 2018 Pierre‐Yves Bienvenu
Thái Hoàng Lê
2