A note on the set A(A + A)
A note on the set A(A + A)
Let $p$ a large enough prime number. When $A$ is a subset of $\mathbb{F}_p\smallsetminus\{0\}$ of cardinality $|A|> (p+1)/3$, then an application of Cauchy-Davenport Theorem gives $\mathbb{F}_p\smallsetminus\{0\}\subset A(A+A)$. In this note, we improve on this and we show that if $|A|\ge 0.3051 p$ implies $A(A+A)\supseteq\mathbb{F}_p\smallsetminus\{0\}$. In the opposite direction we show …