Riccardo De Bin

Follow

Generating author description...

All published works
Action Title Year Authors
+ Influence of single observations on the choice of the penalty parameter in ridge regression 2024 Kristoffer H. Hellton
Camilla Lingjærde
Riccardo De Bin
+ PDF Chat GPTreeO: An R package for continual regression with dividing local Gaussian processes 2024 Timo Braun
Anders Kvellestad
Riccardo De Bin
+ PDF Chat Fractional Polynomial Models as Special Cases of Bayesian Generalized Nonlinear Models 2023 Aliaksandr Hubin
Georg Heinze
Riccardo De Bin
+ PDF Chat Favoring the hierarchical constraint in penalized survival models for randomized trials in precision medicine 2023 Shaima Belhechmi
Gwénaël Le Teuff
Riccardo De Bin
Federico Rotolo
Stefan Michiels
+ Fractional Polynomials Models as Special Cases of Bayesian Generalized Nonlinear Models 2023 Aliaksandr Hubin
Georg Heinze
Riccardo De Bin
+ PDF Chat Favoring the hierarchical constraint in penalized survival models for randomized trials in precision medicine 2022 Shaima Belhechmi
Gwénaël Le Teuff
Riccardo De Bin
Federico Rotolo
Stefan Michiels
+ Multivariable Fractional Polynomials for lithium-ion batteries degradation models under dynamic conditions 2022 Clara Bertinelli Salucci
Azzeddine Bakdi
Ingrid K. Glad
Erik Vanem
Riccardo De Bin
+ PDF Chat A boosting first-hitting-time model for survival analysis in high-dimensional settings 2022 Riccardo De Bin
Vegard Grødem Stikbakke
+ A decision support system for safer airplane landings: Predicting runway conditions using XGBoost and explainable AI 2022 Alise Danielle Midtfjord
Riccardo De Bin
Arne Bang Huseby
+ A copula-based boosting model for time-to-event prediction with dependent censoring 2022 Alise Danielle Midtfjord
Riccardo De Bin
Arne Bang Huseby
+ PDF Chat Modelling publication bias and <i>p</i>‐hacking 2021 Jonas Moss
Riccardo De Bin
+ PDF Chat Framework for evaluating statistical models in physics education research 2021 John M. Aiken
Riccardo De Bin
H. J. Lewandowski
Marcos D. Caballero
+ A Machine Learning Approach to Safer Airplane Landings: Predicting Runway Conditions using Weather and Flight Data. 2021 Alise Danielle Midtfjord
Riccardo De Bin
Arne Bang Huseby
+ A Framework for Evaluating Statistical Models in Physics Education Research 2021 John M. Aiken
Riccardo De Bin
H. J. Lewandowski
Marcos D. Caballero
+ Simple statistical models and sequential deep learning for Lithium-ion batteries degradation under dynamic conditions: Fractional Polynomials vs Neural Networks. 2021 Clara Bertinelli Salucci
Azzeddine Bakdi
Ingrid K. Glad
Erik Vanem
Riccardo De Bin
+ A Framework for Evaluating Statistical Models in Physics Education Research 2021 John M. Aiken
Riccardo De Bin
H. J. Lewandowski
Marcos D. Caballero
+ Multivariable Fractional Polynomials for lithium-ion batteries degradation models under dynamic conditions 2021 Clara Bertinelli Salucci
Azzeddine Bakdi
Ingrid K. Glad
Erik Vanem
Riccardo De Bin
+ PDF Chat Predicting time to graduation at a large enrollment American university 2020 John M. Aiken
Riccardo De Bin
M. Hjorth‐Jensen
Marcos D. Caballero
+ PDF Chat Selection of variables for multivariable models: Opportunities and limitations in quantifying model stability by resampling 2020 Christine Wallisch
Daniela Dunkler
Geraldine Rauch
Riccardo De Bin
Georg Heinze
+ PDF Chat Accounting for grouped predictor variables or pathways in high-dimensional penalized Cox regression models 2020 Shaima Belhechmi
Riccardo De Bin
Federico Rotolo
Stefan Michiels
+ On the asymptotic behaviour of the variance estimator of a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e208" altimg="si7.svg"><mml:mi>U</mml:mi></mml:math>-statistic 2020 Mathias Fuchs
Roman Hornung
Anne‐Laure Boulesteix
Riccardo De Bin
+ Additional file 1 of Accounting for grouped predictor variables or pathways in high-dimensional penalized Cox regression models 2020 Shaima Belhechmi
Riccardo De Bin
Federico Rotolo
Stefan Michiels
+ Modelling publication bias and p-hacking 2019 Jonas Moss
Riccardo De Bin
+ PDF Chat Combining clinical and molecular data in regression prediction models: insights from a simulation study 2019 Riccardo De Bin
Anne‐Laure Boulesteix
Axel Benner
Natália Becker
Willi Sauerbrei
+ Influence of single observations on the choice of the penalty parameter in ridge regression 2019 Kristoffer H. Hellton
Camilla Lingjærde
Riccardo De Bin
+ Modelling publication bias and p-hacking 2019 Jonas Moss
Riccardo De Bin
+ PDF Chat Handling co-dependence issues in resampling-based variable selection procedures: a simulation study 2017 Riccardo De Bin
Willi Sauerbrei
+ PDF Chat Detection of influential points as a byproduct of resampling-based variable selection procedures 2017 Riccardo De Bin
Anne‐Laure Boulesteix
Willi Sauerbrei
+ Overview of Topics Related to Model Selection for Regression 2017 Riccardo De Bin
+ PDF Chat Boosting in Cox regression: a comparison between the likelihood-based and the model-based approaches with focus on the R-packages CoxBoost and mboost 2016 Riccardo De Bin
+ On the equivalence between conditional and random-effects likelihoods in exponential families 2015 Riccardo De Bin
+ PDF Chat Subsampling Versus Bootstrapping in Resampling-Based Model Selection for Multivariable Regression 2015 Riccardo De Bin
Silke Janitza
Willi Sauerbrei
Anne‐Laure Boulesteix
+ PDF Chat Integrated likelihoods in models with stratum nuisance parameters 2015 Riccardo De Bin
Nicola Sartori
Thomas A. Severini
+ A U-statistic estimator for the variance of resampling-based error estimators 2013 Mathias Fuchs
Roman Hornung
Riccardo De Bin
Anne‐Laure Boulesteix
+ A U-statistic estimator for the variance of resampling-based error estimators 2013 Mathias Fuchs
Roman Hornung
Riccardo De Bin
Anne‐Laure Boulesteix
+ Integrated likelihood for the treatment of nuisance parameters 2012 Riccardo De Bin
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Regression Shrinkage and Selection Via the Lasso 1996 Robert Tibshirani
6
+ A bootstrap resampling procedure for model building: Application to the cox regression model 1992 Willi Sauerbrei
Martin Schumacher
4
+ The bootstrap and identification of prognostic factors via cox's proportional hazards regression model 1985 Chen‐Hsin Chen
Stephen L. George
4
+ Assessment and comparison of prognostic classification schemes for survival data 1999 Erika Graf
Claudia Schmoor
Willi Sauerbrei
M. Schumacher
4
+ PDF Chat Subsampling Versus Bootstrapping in Resampling-Based Model Selection for Multivariable Regression 2015 Riccardo De Bin
Silke Janitza
Willi Sauerbrei
Anne‐Laure Boulesteix
4
+ Ridge Regression: Biased Estimation for Nonorthogonal Problems 1970 Arthur E. Hoerl
Robert W. Kennard
4
+ PDF Chat Variable selection – A review and recommendations for the practicing statistician 2018 Georg Heinze
Christine Wallisch
Daniela Dunkler
4
+ The Importance of Knowing When to Stop 2012 Benjamin Hofner
Matthias Schmid
Andreas Mayr
4
+ On stability issues in deriving multivariable regression models 2014 Willi Sauerbrei
Anika Buchholz
Anne‐Laure Boulesteix
Harald Binder
4
+ PDF Chat Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models 2008 Harald Binder
Martin Schumacher
4
+ PDF Chat Stability Selection 2010 Nicolai Meinshausen
Peter Bühlmann
4
+ PDF Chat Added predictive value of high-throughput molecular data to clinical data and its validation 2011 Anne‐Laure Boulesteix
Willi Sauerbrei
4
+ Some Ideas on Using the Bootstrap in Assessing Model Variability 1983 Gail Gong
4
+ The group exponential lasso for bi‐level variable selection 2015 Patrick Breheny
3
+ Regularization Paths for Generalized Linear Models via Coordinate Descent. 2010 Jerome H. Friedman
Trevor Hastie
Rob Tibshirani
3
+ Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling 1994 Patrick Royston
Douglas G. Altman
3
+ PDF Chat The Use of Resampling Methods to Simplify Regression Models in Medical Statistics 1999 Willi Sauerbrei
3
+ PDF Chat Model-based boosting in R: a hands-on tutorial using the R package mboost 2012 Benjamin Hofner
Andreas Mayr
Nikolay Robinzonov
Matthias Schmid
3
+ PDF Chat Boosting in Cox regression: a comparison between the likelihood-based and the model-based approaches with focus on the R-packages CoxBoost and mboost 2016 Riccardo De Bin
3
+ XGBoost 2016 Tianqi Chen
Carlos Guestrin
3
+ PDF Chat Boosting Algorithms: Regularization, Prediction and Model Fitting 2007 Peter Bühlmann
Torsten Hothorn
3
+ PDF Chat To Explain or to Predict? 2010 Galit Shmueli
3
+ PDF Chat biospear: an R package for biomarker selection in penalized Cox regression 2017 Nils Ternès
Federico Rotolo
Stefan Michiels
3
+ Linear Model Selection by Cross-validation 1993 Jun Shao
3
+ PDF Chat Building Multivariable Prognostic and Diagnostic Models: Transformation of the Predictors by Using Fractional Polynomials 1999 Willi Sauerbrei
Patrick Royston
3
+ Information Theory and an Extension of the Maximum Likelihood Principle 1998 H. Akaike
3
+ PDF Chat The Elements of Statistical Learning 2009 Trevor Hastie
Robert Tibshirani
Jerome H. Friedman
3
+ PDF Chat Adaptive Lasso for Cox's proportional hazards model 2007 Hao Helen Zhang
Wenlian Lu
3
+ PDF Chat Operating Characteristics and Extensions of the False Discovery Rate Procedure 2002 Christopher R. Genovese
Larry Wasserman
3
+ PDF Chat The Adaptive Lasso and Its Oracle Properties 2006 Hui Zou
3
+ PDF Chat Penalized methods for bi-level variable selection 2009 Patrick Breheny
Jian Huang
3
+ A Sparse-Group Lasso 2012 Noah Simon
Jerome H. Friedman
Trevor Hastie
Robert Tibshirani
3
+ PDF Chat Multiple testing of treatment‐effect‐modifying biomarkers in a randomized clinical trial with a survival endpoint 2011 Stefan Michiels
Richard F. Potthoff
Stephen L. George
3
+ PDF Chat Bootstrap Methods: Another Look at the Jackknife 1979 B. Efron
3
+ PDF Chat False discovery rate, sensitivity and sample size for microarray studies 2005 Yudi Pawitan
Stefan Michiels
Serge Koscielny
Arief Gusnanto
Alexander Ploner
3
+ Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent 2011 Noah Simon
J. Friedman
Trevor Hastie
Rob Tibshirani
3
+ PDF Chat Model Selection and Estimation in Regression with Grouped Variables 2005 Ming Yuan
Yi Lin
3
+ Integrated likelihood functions for non-Bayesian inference 2007 Thomas A. Severini
3
+ PDF Chat Variable selection for optimal treatment decision 2011 Wenbin Lu
Hao Helen Zhang
Donglin Zeng
2
+ Improving the robustness of fractional polynomial models by preliminary covariate transformation: A pragmatic approach 2006 Patrick Royston
Willi Sauerbrei
2
+ Multivariable regression model building by using fractional polynomials: Description of SAS, STATA and R programs 2005 Willi Sauerbrei
Carolina Meier‐Hirmer
Axel Benner
Patrick Royston
2
+ On properties of predictors derived with a two-step bootstrap model averaging approach—A simulation study in the linear regression model 2007 Anika Buchholz
Norbert Holländer
Willi Sauerbrei
2
+ Integrated likelihood methods for eliminating nuisance parameters 1999 James O. Berger
Brunero Liseo
Robert L. Wolpert
2
+ PDF Chat Frequentist Model Average Estimators 2003 Nils Lid Hjort
Gerda Claeskens
2
+ Parameter Orthogonality and Approximate Conditional Inference 1987 D. R. Cox
Nancy Reid
2
+ Stochastic gradient boosting 2002 Jerome H. Friedman
2
+ PDF Chat Flexible boosting of accelerated failure time models 2008 Matthias Schmid
Torsten Hothorn
2
+ PDF Chat Over-optimism in bioinformatics research 2009 Anne‐Laure Boulesteix
2
+ Masking Effect on Tests for Outliers in Exponential Models 1985 S. M. Bendre
B. K. Kale
2
+ Stabilizing the lasso against cross-validation variability 2013 Steven Roberts
Gen Nowak
2