Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Suryanarayana Maddu
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
Learning locally dominant force balances in active particle systems
2024
Dominik Sturm
Suryanarayana Maddu
Ivo F. Sbalzarini
+
PDF
Chat
The Well: a Large-Scale Collection of Diverse Physics Simulations for Machine Learning
2024
Ruben Ohana
Michael T. McCabe
Lucas Meyer
Rudy Morel
Fruzsina J. Agocs
Miguel Beneitez
Marsha Berger
Blakesley Burkhart
Stuart B. Dalziel
Drummond B. Fielding
+
PDF
Chat
Inferring biological processes with intrinsic noise from cross-sectional data
2024
Suryanarayana Maddu
Victor Chardès
Michael Shelley
+
PDF
Chat
Learning fast, accurate, and stable closures of a kinetic theory of an active fluid
2024
Suryanarayana Maddu
Scott Weady
Michael Shelley
+
Adaptive weighting of Bayesian physics informed neural networks for multitask and multiscale forward and inverse problems
2023
Sarah Perez
Suryanarayana Maddu
Ivo F. Sbalzarini
Philippe Poncet
+
Adaptive weighting of Bayesian physics informed neural networks for multitask and multiscale forward and inverse problems
2023
Sarah Perez
Suryanarayana Maddu
Ivo F. Sbalzarini
Philippe Poncet
+
Learning locally dominant force balances in active particle systems
2023
Dominik Sturm
Suryanarayana Maddu
Ivo F. Sbalzarini
+
Learning fast, accurate, and stable closures of a kinetic theory of an active fluid
2023
Suryanarayana Maddu
Scott Weady
Michael Shelley
+
PDF
Chat
Learning Fast, Accurate, and Stable Closures of a Kinetic Theory of an Active Fluid
2023
Suryanarayana Maddu
Scott Weady
Michael Shelley
+
Stochastic force inference via density estimation
2023
Victor Chardès
Suryanarayana Maddu
Michael Shelley
+
Stability selection enables robust learning of differential equations from limited noisy data
2022
Suryanarayana Maddu
Bevan L. Cheeseman
Ivo F. Sbalzarini
Christian L. Müller
+
Learning deterministic hydrodynamic equations from stochastic active particle dynamics
2022
Suryanarayana Maddu
Quentin Vagne
Ivo F. Sbalzarini
+
PDF
Chat
Parallel Discrete Convolutions on Adaptive Particle Representations of Images
2022
Joel Jonsson
Bevan L. Cheeseman
Suryanarayana Maddu
Krzysztof Gonciarz
Ivo F. Sbalzarini
+
PDF
Chat
Parallel Discrete Convolutions on Adaptive Particle Representations of Images
2021
Joel Jonsson
Bevan L. Cheeseman
Suryanarayana Maddu
Krzysztof Gonciarz
Ivo F. Sbalzarini
+
Inverse Dirichlet weighting enables reliable training of physics informed neural networks
2021
Suryanarayana Maddu
Dominik Sturm
Christian L. Müller
Ivo F. Sbalzarini
+
Inverse-Dirichlet Weighting Enables Reliable Training of Physics Informed Neural Networks
2021
Suryanarayana Maddu
Dominik Sturm
Christian L. Müller
Ivo F. Sbalzarini
+
PDF
Chat
Learning physically consistent differential equation models from data using group sparsity
2021
Suryanarayana Maddu
Bevan L. Cheeseman
Christian L. Müller
Ivo F. Sbalzarini
+
STENCIL-NET: Data-driven solution-adaptive discretization of partial differential equations
2021
Suryanarayana Maddu
Dominik Sturm
Bevan L. Cheeseman
Christian L. Müller
Ivo F. Sbalzarini
+
Inverse-Dirichlet Weighting Enables Reliable Training of Physics Informed Neural Networks
2021
Suryanarayana Maddu
Dominik Sturm
Christian L. Müller
Ivo F. Sbalzarini
+
PDF
Chat
Lattice Boltzmann method for thin-liquid-film hydrodynamics
2019
Stefan Zitz
Andrea Scagliarini
Suryanarayana Maddu
Anton A. Darhuber
Jens Harting
+
Stability selection enables robust learning of partial differential equations from limited noisy data
2019
Suryanarayana Maddu
Bevan L. Cheeseman
Ivo F. Sbalzarini
Christian L. Müller
Common Coauthors
Coauthor
Papers Together
Ivo F. Sbalzarini
14
Bevan L. Cheeseman
6
Christian L. Müller
6
Michael Shelley
5
Dominik Sturm
3
Dominik Sturm
3
Scott Weady
3
Krzysztof Gonciarz
2
Sarah Perez
2
Victor Chardès
2
Philippe Poncet
2
Ruben Ohana
1
Stuart B. Dalziel
1
Yan-Fei Jiang
1
Michael T. McCabe
1
Liam Parker
1
Blakesley Burkhart
1
Shirley Ho
1
Jens Harting
1
Joel Jonsson
1
Christian L. Müller
1
Jonah Miller
1
Quentin Vagne
1
Rudy Morel
1
Jianfu Shen
1
Fruzsina J. Agocs
1
Miles Cranmer
1
Stefan Zitz
1
Miguel Beneitez
1
Payel Mukhopadhyay
1
Keiya Hirashima
1
François Rozet
1
Jared A. Goldberg
1
S. W. Nixon
1
Andrea Scagliarini
1
Anton A. Darhuber
1
Joel Jonsson
1
Romain Watteaux
1
Marsha Berger
1
Bruno Régaldo-Saint Blancard
1
Rich R. Kerswell
1
Lucas Meyer
1
Daniel Fortunato
1
Drummond B. Fielding
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
2016
Steven L. Brunton
Joshua L. Proctor
J. Nathan Kutz
6
+
PDF
Chat
Data-driven discovery of partial differential equations
2017
Samuel Rudy
Steven L. Brunton
Joshua L. Proctor
J. Nathan Kutz
5
+
PDF
Chat
Estimating the Dimension of a Model
1978
Gideon Schwarz
3
+
PDF
Chat
Fluid Dynamics of Bacterial Turbulence
2013
Jörn Dunkel
Sebastian Heidenreich
Knut Drescher
H. H. Wensink
Markus Bär
Raymond E. Goldstein
3
+
B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data
2020
Liu Yang
Xuhui Meng
George Em Karniadakis
3
+
PDF
Chat
Learning partial differential equations via data discovery and sparse optimization
2017
Hayden Schaeffer
3
+
Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
2019
Luning Sun
Han Gao
Shaowu Pan
Jianxun Wang
3
+
Stability selection enables robust learning of differential equations from limited noisy data
2022
Suryanarayana Maddu
Bevan L. Cheeseman
Ivo F. Sbalzarini
Christian L. Müller
3
+
PDF
Chat
Deep learning of dynamics and signal-noise decomposition with time-stepping constraints
2019
Samuel Rudy
J. Nathan Kutz
Steven L. Brunton
3
+
PDF
Chat
Stability Selection
2010
Nicolai Meinshausen
Peter Bühlmann
3
+
OpenFPM: A scalable open framework for particle and particle-mesh codes on parallel computers
2019
Pietro Incardona
Antonio Leo
Yaroslav Zaluzhnyi
Rajesh Ramaswamy
Ivo F. Sbalzarini
3
+
PDF
Chat
Subspace Pursuit for Compressive Sensing Signal Reconstruction
2009
Wei Dai
Olgica Milenković
3
+
PDF
Chat
Learning physically consistent differential equation models from data using group sparsity
2021
Suryanarayana Maddu
Bevan L. Cheeseman
Christian L. Müller
Ivo F. Sbalzarini
3
+
Regression Shrinkage and Selection Via the Lasso
1996
Robert Tibshirani
3
+
PDF
Chat
DeepMoD: Deep learning for model discovery in noisy data
2020
Gert-Jan Both
Subham Choudhury
Pierre Sens
Rémy Kusters
3
+
Convex Optimization
2004
Stephen Boyd
Lieven Vandenberghe
3
+
Iterative hard thresholding for compressed sensing
2009
Thomas Blumensath
Mike E. Davies
3
+
CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
2008
Deanna Needell
Joel A. Tropp
3
+
PDF
Chat
PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network
2019
Zichao Long
Yiping Lu
Bin Dong
3
+
PDF
Chat
Machine learning of linear differential equations using Gaussian processes
2017
Maziar Raissi
Paris Perdikaris
George Em Karniadakis
3
+
PDF
Chat
Deep learning of turbulent scalar mixing
2019
Maziar Raissi
Hessam Babaee
Peyman Givi
2
+
Adam: A Method for Stochastic Optimization
2014
Diederik P. Kingma
Jimmy Ba
2
+
PDF
Chat
A variational level set methodology without reinitialization for the prediction of equilibrium interfaces over arbitrary solid surfaces
2019
Karim Alamé
Sreevatsa Anantharamu
Krishnan Mahesh
2
+
PDF
Chat
On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators
1992
Jonathan Eckstein
Dimitri P. Bertsekas
2
+
Exponential Time Differencing for Stiff Systems
2002
Stephen M. Cox
P. C. Matthews
2
+
PDF
Chat
Non-Convex Global Minimization and False Discovery Rate Control for the TREX
2017
Jacob Bien
Irina Gaynanova
Johannes Lederer
Christian L. Müller
2
+
PDF
Chat
Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
2018
Roberto Cipolla
Yarin Gal
Alex Kendall
2
+
PDF
Chat
Flocks, herds, and schools: A quantitative theory of flocking
1998
John Toner
Yuhai Tu
2
+
PDF
Chat
Inferring Biological Networks by Sparse Identification of Nonlinear Dynamics
2016
Niall M. Mangan
Steven L. Brunton
Joshua L. Proctor
J. Nathan Kutz
2
+
PDF
Chat
fPINNs: Fractional Physics-Informed Neural Networks
2019
Guofei Pang
Lu Lu
George Em Karniadakis
2
+
Biology by numbers: mathematical modelling in developmental biology
2007
Claire J. Tomlin
Jeffrey D. Axelrod
2
+
Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$-Constrained Quadratic Programming (Lasso)
2009
Martin J. Wainwright
2
+
PDF
Chat
Proximal Splitting Methods in Signal Processing
2011
Patrick L. Combettes
Jean‐Christophe Pesquet
2
+
Stability selection enables robust learning of partial differential equations from limited noisy data
2019
Suryanarayana Maddu
Bevan L. Cheeseman
Ivo F. Sbalzarini
Christian L. Müller
2
+
Understanding and mitigating gradient pathologies in physics-informed neural networks
2020
Sifan Wang
Yujun Teng
Paris Perdikaris
2
+
Solving high-dimensional partial differential equations using deep learning
2018
Jiequn Han
Arnulf Jentzen
E Weinan
2
+
Regularization Paths for Generalized Linear Models via Coordinate Descent.
2010
Jerome H. Friedman
Trevor Hastie
Rob Tibshirani
2
+
DGM: A deep learning algorithm for solving partial differential equations
2018
Justin Sirignano
Konstantinos Spiliopoulos
2
+
Data smoothing and numerical differentiation by a regularization method
2009
Jonathan J. Stickel
2
+
Sobolev Training for Neural Networks
2017
Wojciech Marian Czarnecki
Simon Osindero
Max Jaderberg
Grzegorz Świrszcz
Razvan Pascanu
2
+
Meso-scale turbulence in living fluids
2012
H. H. Wensink
Jörn Dunkel
Sebastian Heidenreich
Knut Drescher
Raymond E. Goldstein
Hartmut Löwen
Julia M. Yeomans
2
+
Hidden physics models: Machine learning of nonlinear partial differential equations
2017
Maziar Raissi
George Em Karniadakis
2
+
A Note on Parseval's Theorem for Fourier Transforms
1931
G. H. Hardy
E. C. Titchmarsh
2
+
Identification of continuous, spatiotemporal systems
1998
Henning U. Voss
M. J. Bünner
Mathieu Abel
2
+
Estimating Optimal Transformations for Multiple Regression and Correlation
1985
Leo Breiman
Jerome H. Friedman
2
+
Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
2001
Jianqing Fan
Runze Li
2
+
PDF
Chat
Deep Residual Learning for Image Recognition
2016
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+
Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach
2006
Daniel J. Duffy
2
+
PDF
Chat
Parameter Estimation of Partial Differential Equation Models
2013
Xiaolei Xun
Jiguo Cao
Bani K. Mallick
Arnab Maity
Raymond J. Carroll
2
+
Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models.
2010
Han Liu
Kathryn Roeder
Larry Wasserman
2