Suryanarayana Maddu

Follow

Generating author description...

All published works
Action Title Year Authors
+ Learning locally dominant force balances in active particle systems 2024 Dominik Sturm
Suryanarayana Maddu
Ivo F. Sbalzarini
+ PDF Chat The Well: a Large-Scale Collection of Diverse Physics Simulations for Machine Learning 2024 Ruben Ohana
Michael T. McCabe
Lucas Meyer
Rudy Morel
Fruzsina J. Agocs
Miguel Beneitez
Marsha Berger
Blakesley Burkhart
Stuart B. Dalziel
Drummond B. Fielding
+ PDF Chat Inferring biological processes with intrinsic noise from cross-sectional data 2024 Suryanarayana Maddu
Victor Chardès
Michael Shelley
+ PDF Chat Learning fast, accurate, and stable closures of a kinetic theory of an active fluid 2024 Suryanarayana Maddu
Scott Weady
Michael Shelley
+ Adaptive weighting of Bayesian physics informed neural networks for multitask and multiscale forward and inverse problems 2023 Sarah Perez
Suryanarayana Maddu
Ivo F. Sbalzarini
Philippe Poncet
+ Adaptive weighting of Bayesian physics informed neural networks for multitask and multiscale forward and inverse problems 2023 Sarah Perez
Suryanarayana Maddu
Ivo F. Sbalzarini
Philippe Poncet
+ Learning locally dominant force balances in active particle systems 2023 Dominik Sturm
Suryanarayana Maddu
Ivo F. Sbalzarini
+ Learning fast, accurate, and stable closures of a kinetic theory of an active fluid 2023 Suryanarayana Maddu
Scott Weady
Michael Shelley
+ PDF Chat Learning Fast, Accurate, and Stable Closures of a Kinetic Theory of an Active Fluid 2023 Suryanarayana Maddu
Scott Weady
Michael Shelley
+ Stochastic force inference via density estimation 2023 Victor Chardès
Suryanarayana Maddu
Michael Shelley
+ Stability selection enables robust learning of differential equations from limited noisy data 2022 Suryanarayana Maddu
Bevan L. Cheeseman
Ivo F. Sbalzarini
Christian L. Müller
+ Learning deterministic hydrodynamic equations from stochastic active particle dynamics 2022 Suryanarayana Maddu
Quentin Vagne
Ivo F. Sbalzarini
+ PDF Chat Parallel Discrete Convolutions on Adaptive Particle Representations of Images 2022 Joel Jonsson
Bevan L. Cheeseman
Suryanarayana Maddu
Krzysztof Gonciarz
Ivo F. Sbalzarini
+ PDF Chat Parallel Discrete Convolutions on Adaptive Particle Representations of Images 2021 Joel Jonsson
Bevan L. Cheeseman
Suryanarayana Maddu
Krzysztof Gonciarz
Ivo F. Sbalzarini
+ Inverse Dirichlet weighting enables reliable training of physics informed neural networks 2021 Suryanarayana Maddu
Dominik Sturm
Christian L. Müller
Ivo F. Sbalzarini
+ Inverse-Dirichlet Weighting Enables Reliable Training of Physics Informed Neural Networks 2021 Suryanarayana Maddu
Dominik Sturm
Christian L. Müller
Ivo F. Sbalzarini
+ PDF Chat Learning physically consistent differential equation models from data using group sparsity 2021 Suryanarayana Maddu
Bevan L. Cheeseman
Christian L. Müller
Ivo F. Sbalzarini
+ STENCIL-NET: Data-driven solution-adaptive discretization of partial differential equations 2021 Suryanarayana Maddu
Dominik Sturm
Bevan L. Cheeseman
Christian L. Müller
Ivo F. Sbalzarini
+ Inverse-Dirichlet Weighting Enables Reliable Training of Physics Informed Neural Networks 2021 Suryanarayana Maddu
Dominik Sturm
Christian L. Müller
Ivo F. Sbalzarini
+ PDF Chat Lattice Boltzmann method for thin-liquid-film hydrodynamics 2019 Stefan Zitz
Andrea Scagliarini
Suryanarayana Maddu
Anton A. Darhuber
Jens Harting
+ Stability selection enables robust learning of partial differential equations from limited noisy data 2019 Suryanarayana Maddu
Bevan L. Cheeseman
Ivo F. Sbalzarini
Christian L. Müller
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Discovering governing equations from data by sparse identification of nonlinear dynamical systems 2016 Steven L. Brunton
Joshua L. Proctor
J. Nathan Kutz
6
+ PDF Chat Data-driven discovery of partial differential equations 2017 Samuel Rudy
Steven L. Brunton
Joshua L. Proctor
J. Nathan Kutz
5
+ PDF Chat Estimating the Dimension of a Model 1978 Gideon Schwarz
3
+ PDF Chat Fluid Dynamics of Bacterial Turbulence 2013 Jörn Dunkel
Sebastian Heidenreich
Knut Drescher
H. H. Wensink
Markus Bär
Raymond E. Goldstein
3
+ B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data 2020 Liu Yang
Xuhui Meng
George Em Karniadakis
3
+ PDF Chat Learning partial differential equations via data discovery and sparse optimization 2017 Hayden Schaeffer
3
+ Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data 2019 Luning Sun
Han Gao
Shaowu Pan
Jianxun Wang
3
+ Stability selection enables robust learning of differential equations from limited noisy data 2022 Suryanarayana Maddu
Bevan L. Cheeseman
Ivo F. Sbalzarini
Christian L. Müller
3
+ PDF Chat Deep learning of dynamics and signal-noise decomposition with time-stepping constraints 2019 Samuel Rudy
J. Nathan Kutz
Steven L. Brunton
3
+ PDF Chat Stability Selection 2010 Nicolai Meinshausen
Peter Bühlmann
3
+ OpenFPM: A scalable open framework for particle and particle-mesh codes on parallel computers 2019 Pietro Incardona
Antonio Leo
Yaroslav Zaluzhnyi
Rajesh Ramaswamy
Ivo F. Sbalzarini
3
+ PDF Chat Subspace Pursuit for Compressive Sensing Signal Reconstruction 2009 Wei Dai
Olgica Milenković
3
+ PDF Chat Learning physically consistent differential equation models from data using group sparsity 2021 Suryanarayana Maddu
Bevan L. Cheeseman
Christian L. Müller
Ivo F. Sbalzarini
3
+ Regression Shrinkage and Selection Via the Lasso 1996 Robert Tibshirani
3
+ PDF Chat DeepMoD: Deep learning for model discovery in noisy data 2020 Gert-Jan Both
Subham Choudhury
Pierre Sens
Rémy Kusters
3
+ Convex Optimization 2004 Stephen Boyd
Lieven Vandenberghe
3
+ Iterative hard thresholding for compressed sensing 2009 Thomas Blumensath
Mike E. Davies
3
+ CoSaMP: Iterative signal recovery from incomplete and inaccurate samples 2008 Deanna Needell
Joel A. Tropp
3
+ PDF Chat PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network 2019 Zichao Long
Yiping Lu
Bin Dong
3
+ PDF Chat Machine learning of linear differential equations using Gaussian processes 2017 Maziar Raissi
Paris Perdikaris
George Em Karniadakis
3
+ PDF Chat Deep learning of turbulent scalar mixing 2019 Maziar Raissi
Hessam Babaee
Peyman Givi
2
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
2
+ PDF Chat A variational level set methodology without reinitialization for the prediction of equilibrium interfaces over arbitrary solid surfaces 2019 Karim Alamé
Sreevatsa Anantharamu
Krishnan Mahesh
2
+ PDF Chat On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators 1992 Jonathan Eckstein
Dimitri P. Bertsekas
2
+ Exponential Time Differencing for Stiff Systems 2002 Stephen M. Cox
P. C. Matthews
2
+ PDF Chat Non-Convex Global Minimization and False Discovery Rate Control for the TREX 2017 Jacob Bien
Irina Gaynanova
Johannes Lederer
Christian L. Müller
2
+ PDF Chat Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics 2018 Roberto Cipolla
Yarin Gal
Alex Kendall
2
+ PDF Chat Flocks, herds, and schools: A quantitative theory of flocking 1998 John Toner
Yuhai Tu
2
+ PDF Chat Inferring Biological Networks by Sparse Identification of Nonlinear Dynamics 2016 Niall M. Mangan
Steven L. Brunton
Joshua L. Proctor
J. Nathan Kutz
2
+ PDF Chat fPINNs: Fractional Physics-Informed Neural Networks 2019 Guofei Pang
Lu Lu
George Em Karniadakis
2
+ Biology by numbers: mathematical modelling in developmental biology 2007 Claire J. Tomlin
Jeffrey D. Axelrod
2
+ Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$-Constrained Quadratic Programming (Lasso) 2009 Martin J. Wainwright
2
+ PDF Chat Proximal Splitting Methods in Signal Processing 2011 Patrick L. Combettes
Jean‐Christophe Pesquet
2
+ Stability selection enables robust learning of partial differential equations from limited noisy data 2019 Suryanarayana Maddu
Bevan L. Cheeseman
Ivo F. Sbalzarini
Christian L. Müller
2
+ Understanding and mitigating gradient pathologies in physics-informed neural networks 2020 Sifan Wang
Yujun Teng
Paris Perdikaris
2
+ Solving high-dimensional partial differential equations using deep learning 2018 Jiequn Han
Arnulf Jentzen
E Weinan
2
+ Regularization Paths for Generalized Linear Models via Coordinate Descent. 2010 Jerome H. Friedman
Trevor Hastie
Rob Tibshirani
2
+ DGM: A deep learning algorithm for solving partial differential equations 2018 Justin Sirignano
Konstantinos Spiliopoulos
2
+ Data smoothing and numerical differentiation by a regularization method 2009 Jonathan J. Stickel
2
+ Sobolev Training for Neural Networks 2017 Wojciech Marian Czarnecki
Simon Osindero
Max Jaderberg
Grzegorz Świrszcz
Razvan Pascanu
2
+ Meso-scale turbulence in living fluids 2012 H. H. Wensink
Jörn Dunkel
Sebastian Heidenreich
Knut Drescher
Raymond E. Goldstein
Hartmut Löwen
Julia M. Yeomans
2
+ Hidden physics models: Machine learning of nonlinear partial differential equations 2017 Maziar Raissi
George Em Karniadakis
2
+ A Note on Parseval's Theorem for Fourier Transforms 1931 G. H. Hardy
E. C. Titchmarsh
2
+ Identification of continuous, spatiotemporal systems 1998 Henning U. Voss
M. J. Bünner
Mathieu Abel
2
+ Estimating Optimal Transformations for Multiple Regression and Correlation 1985 Leo Breiman
Jerome H. Friedman
2
+ Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties 2001 Jianqing Fan
Runze Li
2
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+ Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach 2006 Daniel J. Duffy
2
+ PDF Chat Parameter Estimation of Partial Differential Equation Models 2013 Xiaolei Xun
Jiguo Cao
Bani K. Mallick
Arnab Maity
Raymond J. Carroll
2
+ Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models. 2010 Han Liu
Kathryn Roeder
Larry Wasserman
2