Ingmar Schuster

Follow

Generating author description...

All published works
Action Title Year Authors
+ Multivariate Probabilistic Time Series Forecasting via Conditioned Normalizing Flows 2021 Kashif Rasul
Abdul-Saboor Sheikh
Ingmar Schuster
Urs Bergmann
Roland Vollgraf
+ PDF Chat Feature space approximation for kernel-based supervised learning 2021 Patrick Gelß
Stefan Klus
Ingmar Schuster
Christof Schütte
+ Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting 2021 Kashif Rasul
Calvin Seward
Ingmar Schuster
Roland Vollgraf
+ Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting 2021 Kashif Rasul
Calvin Seward
Ingmar Schuster
Roland Vollgraf
+ PDF Chat Markov Chain Importance Sampling—A Highly Efficient Estimator for MCMC 2020 Ingmar Schuster
Ilja Klebanov
+ Markov Chain Importance Sampling – a highly efficient estimator for MCMC 2020 Ingmar Schuster
Ilja Klebanov
+ PDF Chat Singular Value Decomposition of Operators on Reproducing Kernel Hilbert Spaces 2020 Mattes Mollenhauer
Ingmar Schuster
Stefan Klus
Christof Schütte
+ PDF Chat A Rigorous Theory of Conditional Mean Embeddings 2020 Ilja Klebanov
Ingmar Schuster
T. J. Sullivan
+ Multivariate Probabilistic Time Series Forecasting via Conditioned Normalizing Flows 2020 Kashif Rasul
Abdul-Saboor Sheikh
Ingmar Schuster
Urs Bergmann
Roland Vollgraf
+ PDF Chat Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces 2019 Stefan Klus
Ingmar Schuster
Krikamol Muandet
+ Kernel Conditional Density Operators 2019 Ingmar Schuster
Mattes Mollenhauer
Stefan Klus
Krikamol Muandet
+ Set Flow: A Permutation Invariant Normalizing Flow 2019 Kashif Rasul
Ingmar Schuster
Roland Vollgraf
Urs Bergmann
+ Kernel Conditional Density Operators 2019 Ingmar Schuster
Mattes Mollenhauer
Stefan Klus
Krikamol Muandet
+ PDF Chat A kernel-based approach to molecular conformation analysis 2018 Stefan Klus
Andreas Bittracher
Ingmar Schuster
Christof Schütte
+ Analyzing high-dimensional time-series data using kernel transfer operator eigenfunctions. 2018 Stefan Klus
Sebastian Peitz
Ingmar Schuster
+ Analyzing high-dimensional time-series data using kernel transfer operator eigenfunctions 2018 Stefan Klus
Sebastian Peitz
Ingmar Schuster
+ Markov Chain Importance Sampling -- a highly efficient estimator for MCMC 2018 Ingmar Schuster
Ilja Klebanov
+ PDF Chat Kernel Sequential Monte Carlo 2017 Ingmar Schuster
Heiko Strathmann
Brooks Paige
Dino Sejdinović
+ Exact active subspace Metropolis-Hastings, with applications to the Lorenz-96 system 2017 Ingmar Schuster
Paul G. Constantine
T. J. Sullivan
+ Kernel techniques for adaptive Monte Carlo methods 2016 Heiko Strathmann
Dino Sejdinović
Samuel A. Livingston
Ingmar Schuster
Maria Lomeli Garcia
Zoltán Szabó
Christophe Andrieu
Arthur Gretton
+ Kernel Adaptive Sequential Monte Carlo 2015 Ingmar Schuster
Heiko Strathmann
Brooks Paige
Dino Sejdinović
+ Kernel Sequential Monte Carlo 2015 Ingmar Schuster
Heiko Strathmann
Brooks Paige
Dino Sejdinović
+ Gradient Importance Sampling 2015 Ingmar Schuster
+ Consistency of Importance Sampling estimates based on dependent sample sets and an application to models with factorizing likelihoods 2015 Ingmar Schuster
+ Kernel Sequential Monte Carlo 2015 Ingmar Schuster
Heiko Strathmann
Brooks Paige
Dino Sejdinović
+ A Bayesian Model of node interaction in networks 2014 Ingmar Schuster
+ Bayesian factorization of joint categorical distributions for relational data and classical conditioning models. 2014 Ingmar Schuster
Patrick Jähnichen
+ A Bayesian Model of node interaction in networks 2014 Ingmar Schuster
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Joint measures and cross-covariance operators 1973 C. Richard Baker
6
+ PDF Chat Kernel Mean Embedding of Distributions: A Review and Beyond 2017 Krikamol Muandet
Kenji Fukumizu
Bharath K. Sriperumbudur
Bernhard Schölkopf
5
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
5
+ PDF Chat Adaptive importance sampling in general mixture classes 2008 Olivier Cappé
Randal Douc
Arnaud Guillin
Jean‐Michel Marin
Christian P. Robert
5
+ Population Monte Carlo 2004 Olivier Cappé
A Guillin
Jean‐Michel Marin
Christian P. Robert
5
+ Spatial Point Processes 2011 Mark Huber
4
+ PDF Chat Monte Carlo Statistical Methods 2000 Hoon Kim
Christian P. Robert
George Casella
4
+ PDF Chat Data-Driven Model Reduction and Transfer Operator Approximation 2018 Stefan Klus
Feliks Nüske
Péter Koltai
Hao Wu
Ioannis G. Kevrekidis
Christof Schütte
Frank Noé
4
+ PDF Chat Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods 2011 Mark Girolami
Ben Calderhead
4
+ PDF Chat Dimensionality Reduction for Supervised Learning With Reproducing Kernel Hilbert Spaces 2003 Kenji Fukumizu
Francis R. Bach
Michael I. Jordan
4
+ PDF Chat Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces 2019 Stefan Klus
Ingmar Schuster
Krikamol Muandet
4
+ PDF Chat Sequential Monte Carlo Samplers 2006 Pierre Del Moral
Arnaud Doucet
Ajay Jasra
4
+ Kernel Bayes' rule: Bayesian inference with positive definite kernels 2013 Kenji Fukumizu
Le Song
Arthur Gretton
4
+ PDF Chat Adaptive Multiple Importance Sampling 2012 Jean‐Marie Cornuet
Jean‐Michel Marin
Antonietta Mira
Christian P. Robert
4
+ Kernel Adaptive Metropolis-Hastings 2014 Dino Sejdinović
Heiko Strathmann
Maria Lomeli Garcia
Christophe Andrieu
Arthur Gretton
4
+ PDF Chat An Adaptive Metropolis Algorithm 2001 Heikki Haario
Eero Saksman
J. Tamminen
3
+ MCMC-Driven Adaptive Multiple Importance Sampling 2015 Luca Martino
Vı́ctor Elvira
David Luengo
Jukka Corander
3
+ Sequential Monte Carlo on large binary sampling spaces 2011 Christian Schäfer
Nicolás Chopin
3
+ Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling 2014 Jun‐Young Chung
Çaǧlar Gülçehre
Kyunghyun Cho
Yoshua Bengio
3
+ PDF Chat Wormhole Hamiltonian Monte Carlo 2014 Shiwei Lan
Jeffrey Streets
Babak Shahbaba
3
+ PDF Chat A Family of Nonparametric Density Estimation Algorithms 2012 Esteban G. Tabak
Cristina Turner
3
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
3
+ On the numerical approximation of the Perron-Frobenius and Koopman operator 2016 Christof Schütte
Péter Koltai
Stefan Klus
3
+ A tutorial on adaptive MCMC 2008 Christophe Andrieu
Johannes Thoms
3
+ N-BEATS: Neural basis expansion analysis for interpretable time series forecasting 2019 Boris N. Oreshkin
Dmitri Carpov
Nicolas Chapados
Yoshua Bengio
3
+ DeepAR: Probabilistic forecasting with autoregressive recurrent networks 2019 David Salinas
Valentín Flunkert
Jan Gasthaus
Tim Januschowski
3
+ PDF Chat Consistency of adaptive importance sampling and recycling schemes 2019 Jean‐Michel Marin
Pierre Pudlo
Mohammed Sedki
3
+ PDF Chat Kernel Mean Embedding of Distributions: A Review and Beyond 2017 Krikamol Muandet
Kenji Fukumizu
Bharath K. Sriperumbudur
Bernhard Schölkopf
3
+ PDF Chat Importance Sampling Squared for Bayesian Inference in Latent Variable Models 2014 Minh‐Ngoc Tran
Marcel Scharth
M. Pitt
Robert Kohn
3
+ A note on the evaluation of generative models 2015 Lucas Theis
Aäron van den Oord
Matthias Bethge
3
+ PDF Chat Learning Decentralized Controllers for Robot Swarms with Graph Neural Networks 2019 Ekaterina Tolstaya
Fernando Gama
James Paulos
George J. Pappas
Vijay Kumar
Alejandro Ribeiro
3
+ PDF Chat MCMC Using Hamiltonian Dynamics 2011 Radford M. Neal
3
+ PDF Chat Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks 2018 Guokun Lai
Wei-Cheng Chang
Yiming Yang
Hanxiao Liu
3
+ GO‐GARCH: a multivariate generalized orthogonal GARCH model 2002 Roy van der Weide
3
+ PDF Chat An Adaptive Sequential Monte Carlo Sampler 2013 Paul Fearnhead
Benjamín M. Taylor
3
+ Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting 2019 Shiyang Li
Xiaoyong Jin
Yao Xuan
Xiyou Zhou
Wenhu Chen
Yu-Xiang Wang
Xifeng Yan
3
+ An Introduction to Sequential Monte Carlo Methods 2001 Arnaud Doucet
Nando de Freitas
Neil Gordon
3
+ Density estimation using Real NVP 2016 Laurent Dinh
Jascha Sohl‐Dickstein
Samy Bengio
3
+ Regularization of Inverse Problems 1996 Heinz W. Engl
Martin Hanke
Andreas B. Neubauer
3
+ Density Estimation in Infinite Dimensional Exponential Families 2013 Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Aapo Hyvärinen
Revant Kumar
2
+ PDF Chat Rates of convergence of the Hastings and Metropolis algorithms 1996 Kerrie Mengersen
Richard L. Tweedie
2
+ PDF Chat On a Generalization of the Preconditioned Crank–Nicolson Metropolis Algorithm 2016 Daniel Rudolf
Björn Sprungk
2
+ Density estimation using Real NVP 2016 Laurent Dinh
Jascha Sohl‐Dickstein
Samy Bengio
2
+ Bayesian Model Choice Via Markov Chain Monte Carlo Methods 1995 Bradley P. Carlin
Siddhartha Chib
2
+ Bayesian Learning via Stochastic Gradient Langevin Dynamics 2011 Max Welling
Yee Whye Teh
2
+ MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster 2013 Simon L. Cotter
Gareth O. Roberts
Andrew M. Stuart
David White
2
+ PDF Chat Layered adaptive importance sampling 2016 Luca Martino
Vı́ctor Elvira
David Luengo
Jukka Corander
2
+ Optimal scaling for various Metropolis-Hastings algorithms 2001 Gareth O. Roberts
Jeffrey S. Rosenthal
2
+ PDF Chat Theoretical Guarantees for Approximate Sampling from Smooth and Log-Concave Densities 2016 Arnak S. Dalalyan
2
+ Multiple Imputation for Nonresponse in Surveys 1987 Donald B. Rubin
2