Mikhail Smelyanskiy

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Supporting Massive DLRM Inference through Software Defined Memory 2022 Ehsan K. Ardestani
Changkyu Kim
Seung Jae Lee
Luoshang Pan
Jens Axboe
Valmiki Rampersad
Banit Agrawal
Fuxun Yu
Ansha Yu
Trung Le
+ PDF Chat Software-hardware co-design for fast and scalable training of deep learning recommendation models 2022 Dheevatsa Mudigere
Yuchen Hao
Jianyu Huang
Zhihao Jia
Andrew Tulloch
Srinivas Sridharan
Xing Liu
Mustafa Özdal
Jade Nie
Jongsoo Park
+ PDF Chat Low-Precision Hardware Architectures Meet Recommendation Model Inference at Scale 2021 Zhaoxia
Deng
Jongsoo Park
Ping Tang
Haixin Liu
Jie Jie
Yang
Hector Yuen
Jianyu Huang
Daya Shanker Khudia
+ PDF Chat Low-Precision Hardware Architectures Meet Recommendation Model Inference at Scale 2021 Zhaoxia Deng
Jongsoo Park
Ping Tang
Haixin Liu
Jie Yang
Hector Yuen
Jianyu Huang
Daya Shanker Khudia
Xiaohan Wei
Ellie Wen
+ High-performance, Distributed Training of Large-scale Deep Learning Recommendation Models. 2021 Dheevatsa Mudigere
Yuchen Hao
Jianyu Huang
Andrew Tulloch
Srinivas Sridharan
Xing Liu
Mustafa Özdal
Jade Nie
Jongsoo Park
Liang Luo
+ FBGEMM: Enabling High-Performance Low-Precision Deep Learning Inference 2021 Daya Shanker Khudia
Jianyu Huang
Protonu Basu
Summer Deng
Haixin Liu
Jongsoo Park
Mikhail Smelyanskiy
+ Low-Precision Hardware Architectures Meet Recommendation Model Inference at Scale 2021 Zhaoxia
Deng
Jongsoo Park
Ping Tang
Haixin Liu
Yang
Hector Yuen
Jianyu Huang
Daya Shanker Khudia
Xiaohan Wei
+ Supporting Massive DLRM Inference Through Software Defined Memory 2021 Ehsan K. Ardestani
Changkyu Kim
Seungjae Lee
Luoshang Pan
Valmiki Rampersad
Jens Axboe
Banit Agrawal
Fuxun Yu
Ansha Yu
Trung Le
+ Software-Hardware Co-design for Fast and Scalable Training of Deep Learning Recommendation Models 2021 Dheevatsa Mudigere
Yuchen Hao
Jianyu Huang
Zhihao Jia
Andrew Tulloch
Srinivas Sridharan
Xing Liu
Mustafa Özdal
Jade Nie
Jongsoo Park
+ PDF Chat RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing 2020 Liu Ke
Udit Gupta
Benjamin Youngjae Cho
David Brooks
Vikas Chandra
Utku Diril
Amin Firoozshahian
Kim Hazelwood
Bill Jia
Hsien-Hsin S. Lee
+ PDF Chat The Architectural Implications of Facebook's DNN-Based Personalized Recommendation 2020 Udit Gupta
Carole-Jean Wu
Xiaodong Wang
Maxim Naumov
Brandon Reagen
David Brooks
Bradford Cottel
Kim Hazelwood
Mark Hempstead
Bill Jia
+ Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems 2020 Maxim Naumov
John Kim
Dheevatsa Mudigere
Srinivas Sridharan
Xiaodong Wang
Whitney Zhao
Serhat Yılmaz
Changkyu Kim
Hector Yuen
Mustafa Özdal
+ The Architectural Implications of Facebook's DNN-based Personalized Recommendation 2019 Udit Gupta
Carole-Jean Wu
Xiaodong Wang
Maxim Naumov
Brandon Reagen
David Brooks
Bradford Cottel
Kim Hazelwood
Bill Jia
Hsien-Hsin S. Lee
+ RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing 2019 Liu Ke
Udit Gupta
Carole-Jean Wu
Benjamin Youngjae Cho
Mark Hempstead
Brandon Reagen
Xuan Zhang
David Brooks
Vikas Chandra
Utku Diril
+ Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations and Hardware Implications 2018 Jongsoo Park
Maxim Naumov
Protonu Basu
Summer Deng
Aravind Kalaiah
Daya Shanker Khudia
James Law
Parth Malani
Andrey Malevich
Satish Nadathur
+ Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations and Hardware Implications 2018 Jongsoo Park
Maxim Naumov
Protonu Basu
Summer Deng
Aravind Kalaiah
Daya Shanker Khudia
James Law
Parth Malani
Andrey Malevich
Satish Nadathur
+ Practical optimization for hybrid quantum-classical algorithms 2017 Gian Giacomo Guerreschi
Mikhail Smelyanskiy
+ PDF Chat High Performance Emulation of Quantum Circuits 2016 Thomas HĂ€ner
Damian S. Steiger
Mikhail Smelyanskiy
Matthias Troyer
+ On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima 2016 Nitish Shirish Keskar
Dheevatsa Mudigere
Jorge Nocedal
Mikhail Smelyanskiy
Ping Tang
+ Large Scale Distributed Hessian-Free Optimization for Deep Neural Network. 2016 Xi He
Dheevatsa Mudigere
Mikhail Smelyanskiy
Martin Takáč
+ PDF Chat Error Sensitivity to Environmental Noise in Quantum Circuits for Chemical State Preparation 2016 Nicolas P. D. Sawaya
Mikhail Smelyanskiy
Jarrod R. McClean
Alán Aspuru‐Guzik
+ Error Sensitivity to Environmental Noise in Quantum Circuits for Chemical State Preparation 2016 Nicolas P. D. Sawaya
Mikhail Smelyanskiy
Jarrod R. McClean
Alán Aspuru‐Guzik
+ qHiPSTER: The Quantum High Performance Software Testing Environment 2016 Mikhail Smelyanskiy
Nicolas P. D. Sawaya
Alán Aspuru‐Guzik
+ Distributed Hessian-Free Optimization for Deep Neural Network 2016 Xi He
Dheevatsa Mudigere
Mikhail Smelyanskiy
Martin Takáč
+ Error Sensitivity to Environmental Noise in Quantum Circuits for Chemical State Preparation 2016 Nicolas P. D. Sawaya
Mikhail Smelyanskiy
Jarrod R. McClean
Alán Aspuru‐Guzik
+ On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima 2016 Nitish Shirish Keskar
Dheevatsa Mudigere
Jorge Nocedal
Mikhail Smelyanskiy
Ping Tang
+ PDF Chat Lattice QCD with Domain Decomposition on Intel® Xeon Phi Co-Processors 2014 Simon Heybrock
BĂĄlint JoĂł
Dhiraj Kalamkar
Mikhail Smelyanskiy
Karthikeyan Vaidyanathan
Tilo Wettig
Pradeep Dubey
+ PDF Chat An algorithm for the fast solution of symmetric linear complementarity problems 2008 José Luis Morales
Jorge Nocedal
Mikhail Smelyanskiy
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Deep Learning Recommendation Model for Personalization and Recommendation Systems 2019 Maxim Naumov
Dheevatsa Mudigere
Hao-Jun Michael Shi
Jianyu Huang
Narayanan Sundaraman
Jongsoo Park
Xiaodong Wang
Udit Gupta
Carole-Jean Wu
Alisson G. Azzolini
10
+ In-Datacenter Performance Analysis of a Tensor Processing Unit 2017 Norman P. Jouppi
Cliff Young
Nishant Patil
David A. Patterson
Gaurav Agrawal
Raminder Bajwa
S. C. Bates
Suresh Bhatia
Nan Boden
Al Borchers
8
+ Bandana: Using Non-volatile Memory for Storing Deep Learning Models 2018 Assaf Eisenman
Maxim Naumov
Darryl Gardner
Misha Smelyanskiy
Sergey Pupyrev
Kim Hazelwood
Asaf Cidon
Sachin Katti
7
+ PDF Chat The Architectural Implications of Facebook's DNN-Based Personalized Recommendation 2020 Udit Gupta
Carole-Jean Wu
Xiaodong Wang
Maxim Naumov
Brandon Reagen
David Brooks
Bradford Cottel
Kim Hazelwood
Mark Hempstead
Bill Jia
7
+ Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations and Hardware Implications 2018 Jongsoo Park
Maxim Naumov
Protonu Basu
Summer Deng
Aravind Kalaiah
Daya Shanker Khudia
James Law
Parth Malani
Andrey Malevich
Satish Nadathur
6
+ Wide & Deep Learning for Recommender Systems 2016 Heng-Tze Cheng
Levent Koç
Jeremiah Harmsen
Tal Shaked
Tushar Chandra
Hrishi Aradhye
Glen Anderson
Greg S. Corrado
Wei Koong Chai
Mustafa Ispir
5
+ MLPerf Training Benchmark 2019 Peter Mattson
Christine Cheng
Cody Coleman
Greg Diamos
Paulius Micikevicius
David E. Patterson
Hanlin Tang
Gu-Yeon Wei
Peter Bailis
Victor Bittorf
5
+ PDF Chat Fathom: reference workloads for modern deep learning methods 2016 Robert Adolf
Saketh Rama
Brandon Reagen
Gu-Yeon Wei
David Brooks
4
+ PDF Chat MLPerf Inference Benchmark 2020 Vijay Janapa Reddi
Christine Cheng
David Kanter
Peter Mattson
Guenther Schmuelling
Carole-Jean Wu
Brian A. Anderson
Maximilien Breughe
Mark Charlebois
William Chou
4
+ PDF Chat Deep Interest Network for Click-Through Rate Prediction 2018 Guorui Zhou
Xiaoqiang Zhu
Chenru Song
Ying Fan
Zhu Han
Xiao Ma
Yanghui Yan
Junqi Jin
Han Li
Kun Gai
4
+ Post-Training 4-bit Quantization on Embedding Tables 2019 Hui Guan
Andrey Malevich
Jiyan Yang
Jongsoo Park
Hector Yuen
4
+ PDF Chat Learning from eXtreme Bandit Feedback 2021 Romain Lopez
Inderjit S. Dhillon
Michael I. Jordan
4
+ Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems 2020 Maxim Naumov
John Kim
Dheevatsa Mudigere
Srinivas Sridharan
Xiaodong Wang
Whitney Zhao
Serhat Yılmaz
Changkyu Kim
Hector Yuen
Mustafa Özdal
4
+ PDF Chat Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation 2015 Ryan Babbush
Jarrod R. McClean
Dave Wecker
Alán Aspuru‐Guzik
Nathan Wiebe
3
+ PDF Chat In-Datacenter Performance Analysis of a Tensor Processing Unit 2017 Norman P. Jouppi
Cliff Young
Nishant Patil
David A. Patterson
Gaurav Agrawal
Raminder Bajwa
S. C. Bates
Suresh Bhatia
Nan Boden
Al Borchers
3
+ Deep Residual Learning for Image Recognition 2015 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
3
+ MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 2017 Andrew Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
Marco Andreetto
Hartwig Adam
3
+ PDF Chat Simulated Quantum Computation of Molecular Energies 2005 Alán Aspuru‐Guzik
Anthony D. Dutoi
Peter J. Love
Martin Head‐Gordon
3
+ Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour 2017 Priya Goyal
Piotr DollĂĄr
Ross Girshick
Pieter Noordhuis
Lukasz Wesolowski
Aapo Kyrola
Andrew Tulloch
Yangqing Jia
Kaiming He
3
+ Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations and Hardware Implications 2018 Jongsoo Park
Maxim Naumov
Protonu Basu
Summer Deng
Aravind Kalaiah
Daya Shanker Khudia
James Law
Parth Malani
Andrey Malevich
Satish Nadathur
3
+ Neural Collaborative Filtering 2017 Xiangnan He
Lizi Liao
Hanwang Zhang
Liqiang Nie
Xia Hu
Tat‐Seng Chua
3
+ Horovod: fast and easy distributed deep learning in TensorFlow 2018 Alexander Sergeev
Mike Del Balso
3
+ Quantizing deep convolutional networks for efficient inference: A whitepaper 2018 Raghuraman Krishnamoorthi
3
+ Wide & Deep Learning for Recommender Systems 2016 Heng-Tze Cheng
Levent Koç
Jeremiah Harmsen
Tal Shaked
Tushar Chandra
Hrishi Aradhye
Glen Anderson
Greg S. Corrado
Wei Koong Chai
Mustafa Ispir
3
+ Language Models are Few-Shot Learners 2020 T. B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
Prafulla Dhariwal
Arvind Neelakantan
Pranav Shyam
Girish Sastry
Amanda Askell
3
+ Distributed Deep Learning Using Synchronous Stochastic Gradient Descent 2016 Dipankar Das
Sasikanth Avancha
Dheevatsa Mudigere
Karthikeyan Vaidynathan
Srinivas Sridharan
Dhiraj Kalamkar
Bharat Kaul
Pradeep Dubey
3
+ FBGEMM: Enabling High-Performance Low-Precision Deep Learning Inference 2021 Daya Shanker Khudia
Jianyu Huang
Protonu Basu
Summer Deng
Haixin Liu
Jongsoo Park
Mikhail Smelyanskiy
3
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
3
+ Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems 2020 Weijie Zhao
Deping Xie
Ronglai Jia
Yulei Qian
Ruiquan Ding
Mingming Sun
Ping Li
3
+ Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding 2015 Song Han
Huizi Mao
William J. Dally
3
+ TensorDIMM 2019 Youngeun Kwon
Y. Lee
Minsoo Rhu
3
+ PDF Chat ImageNet Training in Minutes 2018 Yang You
Zhao Zhang
Cho‐Jui Hsieh
James Demmel
Kurt Keutzer
2
+ PDF Chat Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks 2018 Minsoo Rhu
Mike O’Connor
Niladrish Chatterjee
Jeff Pool
Youngeun Kwon
Stephen W. Keckler
2
+ Device Placement Optimization with Reinforcement Learning 2017 Azalia Mirhoseini
Hieu Pham
Quoc V. Le
Benoit Steiner
Rasmus Larsen
Yuefeng Zhou
Naveen Kumar
Mohammad Norouzi
Samy Bengio
Jeff Dean
2
+ PDF Chat Two-bit gates are universal for quantum computation 1995 David P. DiVincenzo
2
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
2
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
2
+ Same, Same But Different - Recovering Neural Network Quantization Error Through Weight Factorization 2019 Eldad Meller
Alexander M. Finkel’stein
Uri Almog
Mark Grobman
2
+ On the Dimensionality of Embeddings for Sparse Features and Data 2019 Maxim Naumov
2
+ Scaling Distributed Machine Learning with In-Network Aggregation 2019 Amedeo Sapio
Marco Canini
Chen-Yu Ho
Jacob Nelson
Panos Kalnis
Changhoon Kim
Arvind Krishnamurthy
Masoud Moshref
Dan R. K. Ports
Peter RichtĂĄrik
2
+ Beyond Data and Model Parallelism for Deep Neural Networks 2018 Zhihao Jia
Matei Zaharia
Alex Aiken
2
+ PDF Chat You Only Look Once: Unified, Real-Time Object Detection 2016 Joseph Redmon
Santosh Divvala
Ross Girshick
Ali Farhadi
2
+ 3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning 2018 Hyeontaek Lim
David G. Andersen
Michael Kaminsky
2
+ DeepFM: An End-to-End Wide & Deep Learning Framework for CTR Prediction 2018 Huifeng Guo
Ruiming Tang
Yunming Ye
Zhenguo Li
Xiuqiang He
Zhenhua Dong
2
+ Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm 2017 David Silver
Thomas Hubert
Julian Schrittwieser
Ioannis Antonoglou
Matthew Lai
Arthur Guez
Marc Lanctot
Laurent Sifre
Dharshan Kumaran
Thore Graepel
2
+ PDF Chat Rosetta 2018 Fedor Borisyuk
Albert Gordo
Viswanath Sivakumar
2
+ Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling 2014 Jun‐Young Chung
Çaǧlar GĂŒlçehre
Kyunghyun Cho
Yoshua Bengio
2
+ PDF Chat Understanding the impact of precision quantization on the accuracy and energy of neural networks 2017 Soheil Hashemi
Nicholas Anthony
Hokchhay Tann
R. Iris Bahar
Sherief Reda
2
+ PDF Chat Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation 2017 Melvin Johnson
Mike Schuster
Quoc V. Le
Maxim Krikun
Yonghui Wu
Zhifeng Chen
Nikhil Thorat
Fernanda Viégas
Martin Wattenberg
Greg S. Corrado
2
+ Maximizing CNN Accelerator Efficiency Through Resource Partitioning 2017 Yongming Shen
Michael Ferdman
Peter Milder
2