+
PDF
Chat
|
Accelerated Diffusion Models via Speculative Sampling
|
2025
|
Valentin De Bortoli
Alexandre Galashov
Arthur Gretton
Arnaud Doucet
|
+
PDF
Chat
|
Optimality and Adaptivity of Deep Neural Features for Instrumental
Variable Regression
|
2025
|
Juno Kim
Dimitri Meunier
Arthur Gretton
Taiji Suzuki
Zhu Li
|
+
PDF
Chat
|
Prompting Strategies for Enabling Large Language Models to Infer
Causation from Correlation
|
2024
|
Eleni Sgouritsa
Virginia Aglietti
Yee Whye Teh
Arnaud Doucet
Arthur Gretton
Silvia Chiappa
|
+
PDF
Chat
|
Nonparametric Instrumental Regression via Kernel Methods is Minimax
Optimal
|
2024
|
Dimitri Meunier
Zhu Li
Timothy Christensen
Arthur Gretton
|
+
PDF
Chat
|
Spectral Representations for Accurate Causal Uncertainty Quantification
with Gaussian Processes
|
2024
|
Hugh Dance
Peter Orbanz
Arthur Gretton
|
+
PDF
Chat
|
Credal Two-Sample Tests of Epistemic Ignorance
|
2024
|
Siu Lun Chau
Antonin Schrab
Arthur Gretton
Dino SejdinoviÄ
Krikamol Muandet
|
+
PDF
Chat
|
(De)-regularized Maximum Mean Discrepancy Gradient Flow
|
2024
|
Zonghao Chen
Aratrika Mustafi
Pierre Glaser
Anna Korba
Arthur Gretton
Bharath K. Sriperumbudur
|
+
PDF
Chat
|
Foundations of Multivariate Distributional Reinforcement Learning
|
2024
|
Harley Wiltzer
Jesse Farebrother
Arthur Gretton
Mark Rowland
|
+
PDF
Chat
|
Spectral Representation for Causal Estimation with Hidden Confounders
|
2024
|
Tongzheng Ren
Haotian Sun
Antoine Moulin
Arthur Gretton
Bo Dai
|
+
PDF
Chat
|
Mind the Graph When Balancing Data for Fairness or Robustness
|
2024
|
Jessica Schrouff
Alexis Bellot
Amal Rannen-Triki
Alan Malek
Isabela Albuquerque
Arthur Gretton
Alexander DâAmour
Silvia Chiappa
|
+
PDF
Chat
|
Conditional Bayesian Quadrature
|
2024
|
Zonghao Chen
Masha Naslidnyk
Arthur Gretton
FrançoisâXavier Briol
|
+
PDF
Chat
|
Optimal Rates for Vector-Valued Spectral Regularization Learning
Algorithms
|
2024
|
Dimitri Meunier
Zikai Shen
Mattes Mollenhauer
Arthur Gretton
Li Zhu
|
+
PDF
Chat
|
Deep MMD Gradient Flow without adversarial training
|
2024
|
Alexandre Galashov
Valentin De Bortoli
Arthur Gretton
|
+
PDF
Chat
|
Proxy Methods for Domain Adaptation
|
2024
|
Katherine Tsai
Stephen Pfohl
Olawale Salaudeen
Nicole Chiou
Matt J. Kusner
Alexander DâAmour
Oluwasanmi Koyejo
Arthur Gretton
|
+
PDF
Chat
|
Practical Kernel Tests of Conditional Independence
|
2024
|
Roman Pogodin
Antonin Schrab
Yazhe Li
Danica J. Sutherland
Arthur Gretton
|
+
PDF
Chat
|
A Distributional Analogue to the Successor Representation
|
2024
|
Harley Wiltzer
Jesse Farebrother
Arthur Gretton
Yunhao Tang
André Barreto
Will Dabney
Marc G. Bellemare
Mark Rowland
|
+
|
Discussion of `Multiscale Fisher's Independence Test for Multivariate Dependence'
|
2023
|
Antonin Schrab
Wittawat Jitkrittum
ZoltĂĄn SzabĂł
Dino SejdinoviÄ
Arthur Gretton
|
+
PDF
Chat
|
Kernel methods for causal functions: dose, heterogeneous and incremental response curves
|
2023
|
Rahul Singh
Liying Xu
Arthur Gretton
|
+
PDF
Chat
|
Kernel Methods for Multistage Causal Inference: Mediation Analysis and Dynamic Treatment Effects
|
2023
|
Rahul Singh
Liyuan Xu
Arthur Gretton
|
+
PDF
Chat
|
A kernel Stein test for comparing latent variable models
|
2023
|
Heishiro Kanagawa
Wittawat Jitkrittum
Lester Mackey
Kenji Fukumizu
Arthur Gretton
|
+
|
Deep Hypothesis Tests Detect Clinically Relevant Subgroup Shifts in Medical Images
|
2023
|
Lisa M. Koch
Christian M. SchĂŒrch
Christian F. Baumgartner
Arthur Gretton
Philipp Berens
|
+
|
MMD-FUSE: Learning and Combining Kernels for Two-Sample Testing Without Data Splitting
|
2023
|
Felix Biggs
Antonin Schrab
Arthur Gretton
|
+
|
Prediction under Latent Subgroup Shifts with High-Dimensional Observations
|
2023
|
William I. Walker
Arthur Gretton
Maneesh Sahani
|
+
|
Nonlinear Meta-Learning Can Guarantee Faster Rates
|
2023
|
Dimitri Meunier
Li Zhu
Arthur Gretton
Samory Kpotufe
|
+
|
Kernel Single Proxy Control for Deterministic Confounding
|
2023
|
Liyuan Xu
Arthur Gretton
|
+
|
Distributional Bellman Operators over Mean Embeddings
|
2023
|
Li Kevin Wenliang
Grégoire Delétang
Matthew Aitchison
Marcus HĂŒtter
Anian Ruoss
Arthur Gretton
Mark Rowland
|
+
|
Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm
|
2023
|
Zhu Li
Dimitri Meunier
Mattes Mollenhauer
Arthur Gretton
|
+
PDF
Chat
|
Steinâs Method Meets Computational Statistics: A Review of Some Recent Developments
|
2022
|
Andreas Anastasiou
Alessandro Barp
FrançoisâXavier Briol
Bruno Ebner
Robert E. Gaunt
Fatemeh Ghaderinezhad
Jackson Gorham
Arthur Gretton
Christophe Ley
Qiang Liu
|
+
PDF
Chat
|
Discussion of âMulti-scale Fisherâs independence test for multivariate dependenceâ
|
2022
|
Antonin Schrab
Wittawat Jitkrittum
ZoltĂĄn SzabĂł
Dino SejdinoviÄ
Arthur Gretton
|
+
PDF
Chat
|
KSD Aggregated Goodness-of-fit Test
|
2022
|
Antonin Schrab
Benjamin Guedj
Arthur Gretton
|
+
|
Importance Weighting Approach in Kernel Bayes' Rule
|
2022
|
Liyuan Xu
Yutian Chen
Arnaud Doucet
Arthur Gretton
|
+
|
KSD Aggregated Goodness-of-fit Test
|
2022
|
Antonin Schrab
Benjamin Guedj
Arthur Gretton
|
+
|
Efficient Aggregated Kernel Tests using Incomplete $U$-statistics
|
2022
|
Antonin Schrab
Ilmun Kim
Benjamin Guedj
Arthur Gretton
|
+
|
Causal Inference with Treatment Measurement Error: A Nonparametric Instrumental Variable Approach
|
2022
|
Yuchen Zhu
Limor Gultchin
Arthur Gretton
Matt J. Kusner
Ricardo Silva
|
+
|
Optimal Rates for Regularized Conditional Mean Embedding Learning
|
2022
|
Zhu Li
Dimitri Meunier
Mattes Mollenhauer
Arthur Gretton
|
+
|
A Neural Mean Embedding Approach for Back-door and Front-door Adjustment
|
2022
|
Liyuan Xu
Arthur Gretton
|
+
|
Maximum Likelihood Learning of Unnormalized Models for Simulation-Based Inference
|
2022
|
Pierre Glaser
Michael Arbel
Arnaud Doucet
Arthur Gretton
|
+
|
Controlling Moments with Kernel Stein Discrepancies
|
2022
|
Heishiro Kanagawa
Arthur Gretton
Lester Mackey
|
+
|
Efficient Conditionally Invariant Representation Learning
|
2022
|
Roman Pogodin
Namrata Deka
Yazhe Li
Danica J. Sutherland
Victor Veitch
Arthur Gretton
|
+
|
Adapting to Latent Subgroup Shifts via Concepts and Proxies
|
2022
|
Ibrahim Alabdulmohsin
Nicole Chiou
Alexander DâAmour
Arthur Gretton
Sanmi Koyejo
Matt J. Kusner
Stephen Pfohl
Olawale Salaudeen
Jessica Schrouff
Katherine Tsai
|
+
|
A kernel Stein test of goodness of fit for sequential models
|
2022
|
Jerome Baum
Heishiro Kanagawa
Arthur Gretton
|
+
|
Deep Layer-wise Networks Have Closed-Form Weights
|
2022
|
Chieh Wu
Aria Masoomi
Arthur Gretton
Jennifer Dy
|
+
PDF
Chat
|
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support
|
2021
|
Pierre Glaser
Michael Arbel
Arthur Gretton
|
+
|
Self-Supervised Learning with Kernel Dependence Maximization
|
2021
|
Yazhe Li
Roman Pogodin
Danica J. Sutherland
Arthur Gretton
|
+
|
Composite Goodness-of-fit Tests with Kernels.
|
2021
|
Oscar Key
Tamara FernĂĄndez
Arthur Gretton
FrançoisâXavier Briol
|
+
PDF
Chat
|
Kernel Methods for Multistage Causal Inference: Mediation Analysis and Dynamic Treatment Effects
|
2021
|
Rahul Singh
Liyuan Xu
Arthur Gretton
|
+
PDF
Chat
|
MMD Aggregated Two-Sample Test
|
2021
|
Antonin Schrab
Ilmun Kim
MĂ©lisande Albert
BĂ©atrice Laurent
Benjamin Guedj
Arthur Gretton
|
+
PDF
Chat
|
A Kernel Log-Rank Test of Independence for Right-Censored Data
|
2021
|
Tamara FernĂĄndez
Arthur Gretton
David Rindt
Dino SejdinoviÄ
|
+
|
Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction
|
2021
|
Afsaneh Mastouri
Yuchen Zhu
Limor Gultchin
Anna Korba
Ricardo Silva
Matt J. Kusner
Arthur Gretton
Krikamol Muandet
|
+
PDF
Chat
|
Deep Proxy Causal Learning and its Application to Confounded Bandit
Policy Evaluation
|
2021
|
Liyuan Xu
Heishiro Kanagawa
Arthur Gretton
|
+
|
Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction
|
2021
|
Afsaneh Mastouri
Yuchen Zhu
Limor Gultchin
Anna Korba
Ricardo Silva
Matt J. Kusner
Arthur Gretton
Krikamol Muandet
|
+
|
Stein's Method Meets Statistics: A Review of Some Recent Developments
|
2021
|
Andreas Anastasiou
Alessandro Barp
FrançoisâXavier Briol
Bruno Ebner
Robert E. Gaunt
Fatemeh Ghaderinezhad
Jackson Gorham
Arthur Gretton
Christophe Ley
Qiang Liu
|
+
|
A Kernel Log-Rank Test of Independence for Right-Censored Data
|
2021
|
Tamara FernĂĄndez
Arthur Gretton
David Rindt
Dino SejdinoviÄ
|
+
|
On Instrumental Variable Regression for Deep Offline Policy Evaluation
|
2021
|
Yutian Chen
Liyuan Xu
Ăaǧlar GĂŒlçehre
Tom Le Paine
Arthur Gretton
Nando de Freitas
Arnaud Doucet
|
+
|
Self-Supervised Learning with Kernel Dependence Maximization
|
2021
|
Yazhe Li
Roman Pogodin
Danica J. Sutherland
Arthur Gretton
|
+
|
Towards an Understanding of Benign Overfitting in Neural Networks
|
2021
|
Li Zhu
ZhiâHua Zhou
Arthur Gretton
|
+
|
Deep Proxy Causal Learning and its Application to Confounded Bandit Policy Evaluation
|
2021
|
Liyuan Xu
Heishiro Kanagawa
Arthur Gretton
|
+
|
Sequential Kernel Embedding for Mediated and Time-Varying Dose Response Curves
|
2021
|
Rahul Singh
Liyuan Xu
Arthur Gretton
|
+
|
Composite Goodness-of-fit Tests with Kernels
|
2021
|
Oscar Key
Tamara FernĂĄndez
Arthur Gretton
FrançoisâXavier Briol
|
+
|
MMD Aggregated Two-Sample Test
|
2021
|
Antonin Schrab
Ilmun Kim
MĂ©lisande Albert
BĂ©atrice Laurent
Benjamin Guedj
Arthur Gretton
|
+
|
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support
|
2021
|
Pierre Glaser
Michael Arbel
Arthur Gretton
|
+
|
Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction
|
2021
|
Afsaneh Mastouri
Yuchen Zhu
Limor Gultchin
Anna Korba
Ricardo Silva
Matt J. Kusner
Arthur Gretton
Krikamol Muandet
|
+
|
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
|
2021
|
Andreas Anastasiou
Alessandro Barp
FrançoisâXavier Briol
Bruno Ebner
Robert E. Gaunt
Fatemeh Ghaderinezhad
Jackson Gorham
Arthur Gretton
Christophe Ley
Qiang Liu
|
+
|
A kernel test for quasi-independence.
|
2020
|
Tamara FernĂĄndez
Wenkai Xu
Marc Ditzhaus
Arthur Gretton
|
+
PDF
Chat
|
Learning Deep Features in Instrumental Variable Regression
|
2020
|
Liyuan Xu
Yutian Chen
Siddarth Srinivasan
Nando de Freitas
Arnaud Doucet
Arthur Gretton
|
+
|
Kernel Methods for Policy Evaluation: Treatment Effects, Mediation Analysis, and Off-Policy Planning.
|
2020
|
Rahul Singh
Liyuan Xu
Arthur Gretton
|
+
|
Reproducing Kernel Methods for Nonparametric and Semiparametric Treatment Effects
|
2020
|
Rahul Singh
Liyuan Xu
Arthur Gretton
|
+
PDF
Chat
|
Kernel Methods for Causal Functions: Dose Response Curves and
Heterogeneous Treatment Effects
|
2020
|
Rahul Singh
Liyuan Xu
Arthur Gretton
|
+
|
Kernelized Stein Discrepancy Tests of Goodness-of-fit for Time-to-Event Data
|
2020
|
Tamara FernĂĄndez
NicolĂĄs Rivera
Wenkai Xu
Arthur Gretton
|
+
|
Layer-wise Learning of Kernel Dependence Networks
|
2020
|
Chieh Wu
Aria Masoomi
Arthur Gretton
Jennifer Dy
|
+
|
Kernelized Wasserstein Natural Gradient
|
2020
|
Michael Arbel
Arthur Gretton
Weikai Li
Guido MontĂșfar
|
+
|
Generalized Energy Based Models
|
2020
|
Michael Arbel
Zhou Liang
Arthur Gretton
|
+
PDF
Chat
|
Model-based kernel sum rule: kernel Bayesian inference with probabilistic models
|
2020
|
Yu Nishiyama
Motonobu Kanagawa
Arthur Gretton
Kenji Fukumizu
|
+
|
Learning Deep Kernels for Non-Parametric Two-Sample Tests
|
2020
|
Feng Liu
Wenkai Xu
Jie LĂŒ
Guangquan Zhang
Arthur Gretton
Danica J. Sutherland
|
+
|
Kernelized Stein Discrepancy Tests of Goodness-of-fit for Time-to-Event Data
|
2020
|
Wenkai Xu
Tamara FernĂĄndez
NicolĂĄs Rivera
Arthur Gretton
|
+
|
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
|
2020
|
Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
Arthur Gretton
|
+
|
Learning Deep Features in Instrumental Variable Regression
|
2020
|
Liyuan Xu
Yutian Chen
Siddarth Srinivasan
Nando de Freitas
Arnaud Doucet
Arthur Gretton
|
+
|
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
|
2020
|
Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
Arthur Gretton
|
+
|
A kernel test for quasi-independence
|
2020
|
Tamara FernĂĄndez
Wenkai Xu
Marc Ditzhaus
Arthur Gretton
|
+
|
Kernel Dependence Network
|
2020
|
Chieh Wu
Aria Masoomi
Arthur Gretton
Jennifer Dy
|
+
|
A case for new neural network smoothness constraints
|
2020
|
Mihaela Rosca
Théophane Weber
Arthur Gretton
Shakir Mohamed
|
+
|
Reproducing Kernel Methods for Nonparametric and Semiparametric Treatment Effects
|
2020
|
Rahul Singh
Liyuan Xu
Arthur Gretton
|
+
|
Deep Layer-wise Networks Have Closed-Form Weights
|
2020
|
Chieh Wu
Aria Masoomi
Arthur Gretton
Jennifer Dy
|
+
|
A kernel test for quasi-independence
|
2020
|
Tamara FernĂĄndez
Wenkai Xu
Marc Ditzhaus
Arthur Gretton
|
+
|
Efficient Wasserstein Natural Gradients for Reinforcement Learning
|
2020
|
Ted Moskovitz
Michael Arbel
Ferenc HuszĂĄr
Arthur Gretton
|
+
|
Generalized Energy Based Models
|
2020
|
Michael Arbel
Liang Zhou
Arthur Gretton
|
+
|
Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves
|
2020
|
Rahul Singh
Liyuan Xu
Arthur Gretton
|
+
|
A Weaker Faithfulness Assumption based on Triple Interactions
|
2020
|
Alexander Marx
Arthur Gretton
Joris M. Mooij
|
+
|
Kernel Instrumental Variable Regression
|
2019
|
Rahul Singh
Maneesh Sahani
Arthur Gretton
|
+
|
Kernel Instrumental Variable Regression
|
2019
|
Rahul Singh
Maneesh Sahani
Arthur Gretton
|
+
|
Exponential Family Estimation via Adversarial Dynamics Embedding
|
2019
|
Bo Dai
Zhen Liu
Hanjun Dai
Niao He
Arthur Gretton
Le Song
Dale Schuurmans
|
+
|
Kernel exponential family estimation via doubly dual embedding
|
2019
|
Bo Dai
Hanjun Dai
Arthur Gretton
Le Song
Dale Schuurmans
Niao He
|
+
PDF
Chat
|
Antithetic and Monte Carlo kernel estimators for partial rankings
|
2019
|
MarĂa LomelĂ
Mark Rowland
Arthur Gretton
Zoubin Ghahramani
|
+
|
Maximum Mean Discrepancy Gradient Flow
|
2019
|
Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
|
+
|
A Kernel Stein Test for Comparing Latent Variable Models
|
2019
|
Heishiro Kanagawa
Wittawat Jitkrittum
Lester Mackey
Kenji Fukumizu
Arthur Gretton
|
+
|
Counterfactual Distribution Regression for Structured Inference
|
2019
|
NicolĂČ Colombo
Ricardo Silva
Soong Moon Kang
Arthur Gretton
|
+
|
Exponential Family Estimation via Adversarial Dynamics Embedding
|
2019
|
Bo Dai
Zhen Liu
Hanjun Dai
Niao He
Arthur Gretton
Le Song
Dale Schuurmans
|
+
|
Kernelized Wasserstein Natural Gradient
|
2019
|
Michael Arbel
Arthur Gretton
Wuchen Li
Guido MontĂșfar
|
+
|
A kernel log-rank test of independence for right-censored data
|
2019
|
Tamara FernĂĄndez
Arthur Gretton
David Rindt
Dino SejdinoviÄ
|
+
|
Kernel Instrumental Variable Regression
|
2019
|
Rahul Singh
Maneesh Sahani
Arthur Gretton
|
+
|
Informative Features for Model Comparison
|
2018
|
Wittawat Jitkrittum
Heishiro Kanagawa
Patsorn Sangkloy
James Hays
Bernhard Schölkopf
Arthur Gretton
|
+
|
Learning deep kernels for exponential family densities
|
2018
|
Li Kevin Wenliang
Danica J. Sutherland
Heiko Strathmann
Arthur Gretton
|
+
|
A maximum-mean-discrepancy goodness-of-fit test for censored data
|
2018
|
Tamara FernĂĄndez
Arthur Gretton
|
+
|
Antithetic and Monte Carlo kernel estimators for partial rankings
|
2018
|
MarĂa LomelĂ
Mark Rowland
Arthur Gretton
Zoubin Ghahramani
|
+
|
Efficient and principled score estimation with Nyström kernel exponential families
|
2018
|
Danica J. Sutherland
Heiko Strathmann
Michael Arbel
Arthur Gretton
|
+
|
A Generative Deep Recurrent Model for Exchangeable Data
|
2018
|
Iryna Korshunova
Jonas Degrave
Ferenc HuszĂĄr
Yarin Gal
Arthur Gretton
Joni Dambre
|
+
|
Demystifying MMD GANs
|
2018
|
MikoĆaj BiĆkowski
Danica J. Sutherland
Michael Arbel
Arthur Gretton
|
+
|
On gradient regularizers for MMD GANs
|
2018
|
Michael Arbel
Danica J. Sutherland
MikoĆaj BiĆkowski
Arthur Gretton
|
+
|
Kernel Exponential Family Estimation via Doubly Dual Embedding
|
2018
|
Bo Dai
Hanjun Dai
Arthur Gretton
Le Song
Dale Schuurmans
Niao He
|
+
|
Informative Features for Model Comparison
|
2018
|
Wittawat Jitkrittum
Heishiro Kanagawa
Patsorn Sangkloy
James Hays
Bernhard Schölkopf
Arthur Gretton
|
+
|
BRUNO: A Deep Recurrent Model for Exchangeable Data
|
2018
|
Iryna Korshunova
Jonas Degrave
Ferenc HuszĂĄr
Yarin Gal
Arthur Gretton
Joni Dambre
|
+
|
Learning deep kernels for exponential family densities
|
2018
|
Li Kevin Wenliang
Danica J. Sutherland
Heiko Strathmann
Arthur Gretton
|
+
|
A maximum-mean-discrepancy goodness-of-fit test for censored data
|
2018
|
Tamara FernĂĄndez
Arthur Gretton
|
+
|
Antithetic and Monte Carlo kernel estimators for partial rankings
|
2018
|
MarĂa LomelĂ
Mark Rowland
Arthur Gretton
Zoubin Ghahramani
|
+
|
Demystifying MMD GANs
|
2018
|
MikoĆaj BiĆkowski
Danica J. Sutherland
Michael Arbel
Arthur Gretton
|
+
PDF
Chat
|
A Linear-Time Kernel Goodness-of-Fit Test
|
2017
|
Wittawat Jitkrittum
Wenkai Xu
ZoltĂĄn SzabĂł
Kenji Fukumizu
Arthur Gretton
|
+
|
Kernel Conditional Exponential Family.
|
2017
|
Michael Arbel
Arthur Gretton
|
+
|
Density Estimation in Infinite Dimensional Exponential Families
|
2017
|
Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Aapo HyvÀrinen
Revant Kumar
|
+
PDF
Chat
|
GP-Select: Accelerating EM Using Adaptive Subspace Preselection
|
2017
|
Jacquelyn A. Shelton
Jan Gasthaus
Zhenwen Dai
Jörg LĂŒcke
Arthur Gretton
|
+
|
Efficient and principled score estimation.
|
2017
|
Danica J. Sutherland
Heiko Strathmann
Michael Arbel
Arthur Gretton
|
+
|
Efficient and principled score estimation with Nystr\"om kernel exponential families
|
2017
|
Danica J. Sutherland
Heiko Strathmann
Michael Arbel
Arthur Gretton
|
+
PDF
Chat
|
Large-scale kernel methods for independence testing
|
2017
|
Qinyi Zhang
Sarah Filippi
Arthur Gretton
Dino SejdinoviÄ
|
+
|
A Linear-Time Kernel Goodness-of-Fit Test
|
2017
|
Wittawat Jitkrittum
Wenkai Xu
ZoltĂĄn SzabĂł
Kenji Fukumizu
Arthur Gretton
|
+
|
Kernel Conditional Exponential Family
|
2017
|
Michael Arbel
Arthur Gretton
|
+
|
Efficient and principled score estimation with Nyström kernel exponential families
|
2017
|
Danica J. Sutherland
Heiko Strathmann
Michael Arbel
Arthur Gretton
|
+
|
Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy
|
2016
|
Danica J. Sutherland
Hsiao-Yu Fish Tung
Heiko Strathmann
Soumyajit De
Aaditya Ramdas
Alex Smola
Arthur Gretton
|
+
PDF
Chat
|
MERLiN: Mixture Effect Recovery in Linear Networks
|
2016
|
Sebastian Weichwald
Moritz GrosseâWentrup
Arthur Gretton
|
+
|
Kernel techniques for adaptive Monte Carlo methods
|
2016
|
Heiko Strathmann
Dino SejdinoviÄ
Samuel A. Livingston
Ingmar Schuster
Maria Lomeli Garcia
ZoltĂĄn SzabĂł
Christophe Andrieu
Arthur Gretton
|
+
|
A kernel test for three-variable interactions with random processes
|
2016
|
Paul K. Rubenstein
Kacper Chwialkowski
Arthur Gretton
|
+
|
A kernel test of goodness of fit
|
2016
|
Kacper Chwialkowski
Heiko Strathmann
Arthur Gretton
|
+
PDF
Chat
|
Recovery of non-linear cause-effect relationships from linearly mixed neuroimaging data
|
2016
|
Sebastian Weichwald
Arthur Gretton
Bernhard Schölkopf
Moritz GrosseâWentrup
|
+
|
Interpretable Distribution Features with Maximum Testing Power
|
2016
|
Wittawat Jitkrittum
ZoltĂĄn SzabĂł
Kacper Chwialkowski
Arthur Gretton
|
+
|
Distribution Regression with Minimax-Optimal Guarantee
|
2016
|
ZoltĂĄn SzabĂł
B Sriperumbudur
BarnabĂĄs PĂłczos
Arthur Gretton
|
+
|
A Kernel Test of Goodness of Fit
|
2016
|
Kacper Chwialkowski
Heiko Strathmann
Arthur Gretton
|
+
|
A Kernel Test for Three-Variable Interactions with Random Processes
|
2016
|
Paul K. Rubenstein
Kacper Chwialkowski
Arthur Gretton
|
+
|
Fast Non-Parametric Tests of Relative Dependency and Similarity
|
2016
|
Wacha Bounliphone
Eugene Belilovsky
Arthur Tenenhaus
Ioannis Antonoglou
Arthur Gretton
Matthew B. Blashcko
|
+
|
Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy
|
2016
|
Danica J. Sutherland
Hsiao-Yu Fish Tung
Heiko Strathmann
Soumyajit De
Aaditya Ramdas
Alex Smola
Arthur Gretton
|
+
|
An Adaptive Test of Independence with Analytic Kernel Embeddings
|
2016
|
Wittawat Jitkrittum
ZoltĂĄn SzabĂł
Arthur Gretton
|
+
|
Kernel mean shrinkage estimators
|
2016
|
Krikamol Muandet
Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Bernhard Schölkopf
|
+
|
Learning theory for distribution regression
|
2016
|
ZoltĂĄn SzabĂł
Bharath K. Sriperumbudur
BarnabĂĄs PĂłczos
Arthur Gretton
|
+
|
Interpretable Distribution Features with Maximum Testing Power
|
2016
|
Wittawat Jitkrittum
ZoltĂĄn SzabĂł
Kacper Chwialkowski
Arthur Gretton
|
+
|
Interpretable Distribution Features with Maximum Testing Power
|
2016
|
Wittawat Jitkrittum
ZoltĂĄn SzabĂł
Kacper Chwialkowski
Arthur Gretton
|
+
|
A Kernel Test of Goodness of Fit
|
2016
|
Kacper Chwialkowski
Heiko Strathmann
Arthur Gretton
|
+
PDF
Chat
|
Filtering with State-Observation Examples via Kernel Monte Carlo Filter
|
2015
|
Motonobu Kanagawa
Yu Nishiyama
Arthur Gretton
Kenji Fukumizu
|
+
|
Learning Theory for Vector-Valued Distribution Regression
|
2015
|
ZoltĂĄn SzabĂł
B Sriperumbudur
BarnabĂĄs PĂłczos
Arthur Gretton
|
+
|
Fast two-sample testing with analytic representations of probability measures
|
2015
|
Kacper Chwialkowski
Aaditya Ramdas
Dino SejdinoviÄ
Arthur Gretton
|
+
|
Gradient-free Hamiltonian Monte Carlo with efficient kernel exponential families
|
2015
|
Heiko Strathmann
Dino SejdinoviÄ
Samuel Livingstone
ZoltĂĄn SzabĂł
Arthur Gretton
|
+
|
Distribution Regression: Computational and Statistical Tradeoffs
|
2015
|
ZoltĂĄn SzabĂł
B Sriperumbudur
BarnabĂĄs PĂłczos
Arthur Gretton
|
+
|
A Test of Relative Similarity
|
2015
|
Wacha Bounliphone
Eugene Belilovsky
Matthew B. Blaschko
Ioannis Antonoglou
Arthur Gretton
|
+
|
Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages
|
2015
|
Wittawat Jitkrittum
Arthur Gretton
Nicolas Heess
S. M. Ali Eslami
Balaji Lakshminarayanan
Dino SejdinoviÄ
ZoltĂĄn SzabĂł
|
+
|
Consistent Vector-valued Distribution Regression
|
2015
|
ZoltĂĄn SzabĂł
Arthur Gretton
BarnabĂĄs PĂłczos
B Sriperumbudur
|
+
|
Passing Expectation Propagation Messages with Kernel Methods
|
2015
|
Wittawat Jitkrittum
Arthur Gretton
Nicolas Heess
|
+
|
A simpler condition for consistency of a kernel independence test
|
2015
|
Arthur Gretton
|
+
|
A Test of Relative Similarity For Model Selection in Generative Models
|
2015
|
Wacha Bounliphone
Eugene Belilovsky
Matthew B. Blaschko
Ioannis Antonoglou
Arthur Gretton
|
+
|
Fast two-sample testing with analytic representations of probability measures
|
2015
|
Kacper Chwialkowski
Aaditya Ramdas
Dino SejdinoviÄ
Arthur Gretton
|
+
|
Fast Two-Sample Testing with Analytic Representations of Probability Measures
|
2015
|
Kacper Chwialkowski
Aaditya Ramdas
Dino SejdinoviÄ
Arthur Gretton
|
+
|
Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families
|
2015
|
Heiko Strathmann
Dino SejdinoviÄ
Samuel Livingstone
ZoltĂĄn SzabĂł
Arthur Gretton
|
+
|
Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages
|
2015
|
Wittawat Jitkrittum
Arthur Gretton
Nicolas Heess
S. M. Ali Eslami
Balaji Lakshminarayanan
Dino SejdinoviÄ
ZoltĂĄn SzabĂł
|
+
|
Passing Expectation Propagation Messages with Kernel Methods
|
2015
|
Wittawat Jitkrittum
Arthur Gretton
Nicolas Heess
|
+
|
Kernel non-parametric tests of relative dependency
|
2014
|
Wacha Bounliphone
Arthur Gretton
Matthew B. Blaschko
|
+
|
GP-select: Accelerating EM using adaptive subspace preselection
|
2014
|
Jacquelyn A. Shelton
Jan Gasthaus
Zhenwen Dai
Joerg Luecke
Arthur Gretton
|
+
|
A Wild Bootstrap for Degenerate Kernel Tests
|
2014
|
Kacper Chwialkowski
Dino SejdinoviÄ
Arthur Gretton
|
+
|
Learning Theory for Distribution Regression
|
2014
|
ZoltĂĄn SzabĂł
Bharath K. Sriperumbudur
BarnabĂĄs PĂłczos
Arthur Gretton
|
+
|
Model-based Kernel Sum Rule
|
2014
|
Yu Nishiyama
Motonobu Kanagawa
Arthur Gretton
Kenji Fukumizu
|
+
|
Simple consistent distribution regression on compact metric domains
|
2014
|
ZoltĂĄn SzabĂł
Arthur Gretton
BarnabĂĄs PĂłczos
B Sriperumbudur
|
+
|
A Wild Bootstrap for Degenerate Kernel Tests
|
2014
|
Kacper Chwialkowski
Dino SejdinoviÄ
Arthur Gretton
|
+
|
Kernel Adaptive Metropolis-Hastings
|
2014
|
Dino SejdinoviÄ
Heiko Strathmann
Maria Lomeli Garcia
Christophe Andrieu
Arthur Gretton
|
+
|
Distribution Regression - the Set Kernel Heuristic is Consistent
|
2014
|
ZoltĂĄn SzabĂł
Arthur Gretton
BarnabĂĄs PĂłczos
B Sriperumbudur
|
+
|
A Kernel Independence Test for Random Processes
|
2014
|
Kacper Chwialkowski
Arthur Gretton
|
+
|
Consistent, Two-Stage Sampled Distribution Regression via Mean Embedding.
|
2014
|
ZoltĂĄn SzabĂł
Arthur Gretton
BarnabĂĄs PĂłczos
Bharath K. Sriperumbudur
|
+
|
A Kernel Independence Test for Random Processes
|
2014
|
Kacper Chwialkowski
Arthur Gretton
|
+
|
Kernel Mean Shrinkage Estimators
|
2014
|
Krikamol Muandet
Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Bernhard Schölkopf
|
+
|
Two-stage Sampled Learning Theory on Distributions
|
2014
|
ZoltĂĄn SzabĂł
Arthur Gretton
BarnabĂĄs PĂłczos
Bharath K. Sriperumbudur
|
+
|
A low variance consistent test of relative dependency
|
2014
|
Wacha Bounliphone
Arthur Gretton
Arthur Tenenhaus
Matthew B. Blaschko
|
+
|
Dependent Pairs of Maximum Mean Descrepancy Tests
|
2014
|
Ioannis Antonoglou
Matthew B. Blaschko
Arthur Gretton
|
+
|
Model-based Kernel Sum Rule: Kernel Bayesian Inference with Probabilistic Models
|
2014
|
Yu Nishiyama
Motonobu Kanagawa
Arthur Gretton
Kenji Fukumizu
|
+
|
Learning Theory for Distribution Regression
|
2014
|
ZoltĂĄn SzabĂł
Bharath K. Sriperumbudur
BarnabĂĄs PĂłczos
Arthur Gretton
|
+
|
A Wild Bootstrap for Degenerate Kernel Tests
|
2014
|
Kacper Chwialkowski
Dino SejdinoviÄ
Arthur Gretton
|
+
|
Kernel Monte Carlo Filter
|
2013
|
Motonobu Kanagawa
Yu Nishiyama
Arthur Gretton
Kenji Fukumizu
|
+
|
A Kernel Test for Three-Variable Interactions
|
2013
|
Dino SejdinoviÄ
Arthur Gretton
Wicher Bergsma
|
+
|
B -tests: low variance kernel two-sample tests
|
2013
|
Wojciech Zaremba
Arthur Gretton
Matthew B. Blaschko
|
+
PDF
Chat
|
B-tests: Low Variance Kernel Two-Sample Tests
|
2013
|
Wojciech Zaremba
Arthur Gretton
Matthew B. Blaschko
|
+
|
Equivalence of distance-based and RKHS-based statistics in hypothesis testing
|
2013
|
Dino SejdinoviÄ
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
|
+
|
B-test: A Non-parametric, Low Variance Kernel Two-sample Test
|
2013
|
Wojciech Zaremba
Arthur Gretton
Matthew B. Blaschko
|
+
|
Smooth Operators
|
2013
|
Steffen GrĂŒnewĂ€lder
Arthur Gretton
John ShaweâTaylor
|
+
|
A Kernel Test for Three-Variable Interactions
|
2013
|
Dino SejdinoviÄ
Arthur Gretton
Wicher Bergsma
|
+
|
Kernel Mean Estimation and Stein's Effect
|
2013
|
Krikamol Muandet
Kenji Fukumizu
Bharath K. Sriperumbudur
Arthur Gretton
Bernhard Schölkopf
|
+
|
Density Estimation in Infinite Dimensional Exponential Families
|
2013
|
Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Aapo HyvÀrinen
Revant Kumar
|
+
|
B-tests: Low Variance Kernel Two-Sample Tests
|
2013
|
Wojciech Zaremba
Arthur Gretton
Matthew B. Blaschko
|
+
|
B-test: A Non-parametric, Low Variance Kernel Two-sample Test
|
2013
|
Wojciech Zaremba
Arthur Gretton
Matthew B. Blaschko
|
+
|
Kernel Bayes' rule: Bayesian inference with positive definite kernels
|
2013
|
Kenji Fukumizu
Le Song
Arthur Gretton
|
+
|
Kernel Adaptive Metropolis-Hastings
|
2013
|
Dino SejdinoviÄ
Heiko Strathmann
Maria Lomeli Garcia
Christophe Andrieu
Arthur Gretton
|
+
|
Filtering with State-Observation Examples via Kernel Monte Carlo Filter
|
2013
|
Motonobu Kanagawa
Yu Nishiyama
Arthur Gretton
Kenji Fukumizu
|
+
|
Hilbert Space Embeddings of Predictive State Representations
|
2013
|
Byron Boots
Geoffrey J. Gordon
Arthur Gretton
|
+
|
Kernel Mean Estimation and Stein's Effect
|
2013
|
Krikamol Muandet
Kenji Fukumizu
Bharath K. Sriperumbudur
Arthur Gretton
Bernhard Schölkopf
|
+
|
A Kernel Test for Three-Variable Interactions
|
2013
|
Dino SejdinoviÄ
Arthur Gretton
Wicher Bergsma
|
+
|
Optimal kernel choice for large-scale two-sample tests
|
2012
|
Arthur Gretton
Dino SejdinoviÄ
Heiko Strathmann
Sivaraman Balakrishnan
Massimiliano Pontil
Kenji Fukumizu
Bharath K. Sriperumbudur
|
+
|
Hilbert space embeddings of POMDPs
|
2012
|
Yu Nishiyama
Abdeslam Boularias
Arthur Gretton
Kenji Fukumizu
|
+
|
Modelling transition dynamics in MDPs with RKHS embeddings
|
2012
|
Guy Lever
Luca Baldassarre
Arthur Gretton
Massimiliano Pontil
Steffen Gr new lder
|
+
|
Hypothesis testing using pairwise distances and associated kernels
|
2012
|
Dino SejdinoviÄ
Arthur Gretton
Kenji Fukumizu
Bharath K. Sriperumbudur
|
+
|
Modelling transition dynamics in MDPs with RKHS embeddings
|
2012
|
Steffen GrĂŒnewĂ€lder
Guy Lever
Luca Baldassarre
Massi Pontil
Arthur Gretton
|
+
|
Hypothesis testing using pairwise distances and associated kernels
|
2012
|
Dino SejdinoviÄ
Arthur Gretton
Bharath K. Sriperumbudur
Kenji Fukumizu
|
+
|
A kernel two-sample test
|
2012
|
Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alexander J. Smola
|
+
|
Conditional mean embeddings as regressors - supplementary
|
2012
|
Steffen GrĂŒnewĂ€lder
Guy Lever
Luca Baldassarre
Sam Patterson
Arthur Gretton
Massimiliano Pontil
|
+
|
Hypothesis testing using pairwise distances and associated kernels (with Appendix)
|
2012
|
Dino SejdinoviÄ
Arthur Gretton
Bharath K. Sriperumbudur
Kenji Fukumizu
|
+
PDF
Chat
|
On the empirical estimation of integral probability metrics
|
2012
|
Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Bernhard Schölkopf
Gert Lanckriet
|
+
|
Hilbert Space Embeddings of POMDPs
|
2012
|
Yu Nishiyama
Abdeslam Boularias
Arthur Gretton
Kenji Fukumizu
|
+
|
Modelling transition dynamics in MDPs with RKHS embeddings
|
2012
|
Steffen GrĂŒnewĂ€lder
Guy Lever
Luca Baldassarre
Massi Pontil
Arthur Gretton
|
+
|
Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees
|
2011
|
Joseph E. Gonzalez
Yucheng Low
Arthur Gretton
Carlos Guestrin
|
+
|
Kernel Belief Propagation
|
2011
|
Le Song
Arthur Gretton
Danny Bickson
Yucheng Low
Carlos Guestrin
|
+
|
Modeling transition dynamics in MDPs with RKHS embeddings of conditional distributions
|
2011
|
Steffen GrĂŒnewĂ€lder
Luca Baldassarre
Massimiliano Pontil
Arthur Gretton
Guy Lever
|
+
|
Kernel Belief Propagation
|
2011
|
Le Song
Arthur Gretton
Danny Bickson
Yucheng Low
Carlos Guestrin
|
+
|
Kernel Bayes' rule
|
2010
|
Kenji Fukumizu
Le Song
Arthur Gretton
|
+
|
Non-parametric estimation of integral probability metrics
|
2010
|
Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Bernhard Schölkopf
Gert Lanckriet
|
+
|
Hilbert Space Embeddings and Metrics on Probability Measures
|
2010
|
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
Bernhard Schölkopf
Gert Lanckriet
|
+
|
Consistent Nonparametric Tests of Independence
|
2010
|
Arthur Gretton
Låszló Györfi
|
+
|
Kernel Bayes' rule
|
2010
|
Kenji Fukumizu
Le Song
Arthur Gretton
|
+
|
A Fast, Consistent Kernel Two-Sample Test
|
2009
|
Arthur Gretton
Kenji Fukumizu
ZaĂŻd Harchaoui
Bharath K. Sriperumbudur
|
+
|
Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions
|
2009
|
Kenji Fukumizu
Arthur Gretton
Gert Lanckriet
Bernhard Schölkopf
Bharath K. Sriperumbudur
|
+
PDF
Chat
|
Discussion of: Brownian distance covariance
|
2009
|
Arthur Gretton
Kenji Fukumizu
Bharath K. Sriperumbudur
|
+
|
Hilbert space embeddings and metrics on probability measures
|
2009
|
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
Bernhard Schölkopf
Gert Lanckriet
|
+
|
A note on integral probability metrics and $\phi$-divergences
|
2009
|
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
Gert Lanckriet
Bernhard Schölkopf
|
+
|
On integral probability metrics, Ï-divergences and binary classification
|
2009
|
Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Bernhard Schölkopf
Gert Lanckriet
|
+
|
Hilbert space embeddings and metrics on probability measures
|
2009
|
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
Bernhard Schölkopf
Gert Lanckriet
|
+
PDF
Chat
|
Nonparametric Independence Tests: Space Partitioning and Kernel Approaches
|
2008
|
Arthur Gretton
Låszló Györfi
|
+
|
A Kernel Method for the Two-Sample Problem
|
2008
|
Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alexander J. Smola
|
+
|
Kernel Measures of Conditional Dependence
|
2007
|
Kenji Fukumizu
Arthur Gretton
Xiaohai Sun
Bernhard Schölkopf
|
+
|
Hilbert Space Representations of Probability Distributions
|
2007
|
Arthur Gretton
|
+
PDF
Chat
|
A Kernel Method for the Two-Sample-Problem
|
2007
|
Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alexander J. Smola
|
+
|
A kernel approach to comparing distributions
|
2007
|
Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alexander J. Smola
|
+
|
Supervised Feature Selection via Dependence Estimation
|
2007
|
Le Song
Alex Smola
Arthur Gretton
Karsten Borgwardt
Justin BedĆ
|
+
|
Kernel Methods for Measuring Independence
|
2005
|
Arthur Gretton
Ralf Herbrich
Alexander J. Smola
Olivier Bousquet
Bernhard Schölkopf
|
+
|
Behaviour and Convergence of the Constrained Covariance
|
2004
|
Arthur Gretton
Bousquet Smola A
Schölkopf Herbrich R
NK Logothetis
|
+
PDF
Chat
|
The kernel mutual information
|
2004
|
Arthur Gretton
Ralf Herbrich
Alex Smola
|