Arthur Gretton

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Accelerated Diffusion Models via Speculative Sampling 2025 Valentin De Bortoli
Alexandre Galashov
Arthur Gretton
Arnaud Doucet
+ PDF Chat Optimality and Adaptivity of Deep Neural Features for Instrumental Variable Regression 2025 Juno Kim
Dimitri Meunier
Arthur Gretton
Taiji Suzuki
Zhu Li
+ PDF Chat Prompting Strategies for Enabling Large Language Models to Infer Causation from Correlation 2024 Eleni Sgouritsa
Virginia Aglietti
Yee Whye Teh
Arnaud Doucet
Arthur Gretton
Silvia Chiappa
+ PDF Chat Nonparametric Instrumental Regression via Kernel Methods is Minimax Optimal 2024 Dimitri Meunier
Zhu Li
Timothy Christensen
Arthur Gretton
+ PDF Chat Spectral Representations for Accurate Causal Uncertainty Quantification with Gaussian Processes 2024 Hugh Dance
Peter Orbanz
Arthur Gretton
+ PDF Chat Credal Two-Sample Tests of Epistemic Ignorance 2024 Siu Lun Chau
Antonin Schrab
Arthur Gretton
Dino Sejdinović
Krikamol Muandet
+ PDF Chat (De)-regularized Maximum Mean Discrepancy Gradient Flow 2024 Zonghao Chen
Aratrika Mustafi
Pierre Glaser
Anna Korba
Arthur Gretton
Bharath K. Sriperumbudur
+ PDF Chat Foundations of Multivariate Distributional Reinforcement Learning 2024 Harley Wiltzer
Jesse Farebrother
Arthur Gretton
Mark Rowland
+ PDF Chat Spectral Representation for Causal Estimation with Hidden Confounders 2024 Tongzheng Ren
Haotian Sun
Antoine Moulin
Arthur Gretton
Bo Dai
+ PDF Chat Mind the Graph When Balancing Data for Fairness or Robustness 2024 Jessica Schrouff
Alexis Bellot
Amal Rannen-Triki
Alan Malek
Isabela Albuquerque
Arthur Gretton
Alexander D’Amour
Silvia Chiappa
+ PDF Chat Conditional Bayesian Quadrature 2024 Zonghao Chen
Masha Naslidnyk
Arthur Gretton
François‐Xavier Briol
+ PDF Chat Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms 2024 Dimitri Meunier
Zikai Shen
Mattes Mollenhauer
Arthur Gretton
Li Zhu
+ PDF Chat Deep MMD Gradient Flow without adversarial training 2024 Alexandre Galashov
Valentin De Bortoli
Arthur Gretton
+ PDF Chat Proxy Methods for Domain Adaptation 2024 Katherine Tsai
Stephen Pfohl
Olawale Salaudeen
Nicole Chiou
Matt J. Kusner
Alexander D’Amour
Oluwasanmi Koyejo
Arthur Gretton
+ PDF Chat Practical Kernel Tests of Conditional Independence 2024 Roman Pogodin
Antonin Schrab
Yazhe Li
Danica J. Sutherland
Arthur Gretton
+ PDF Chat A Distributional Analogue to the Successor Representation 2024 Harley Wiltzer
Jesse Farebrother
Arthur Gretton
Yunhao Tang
André Barreto
Will Dabney
Marc G. Bellemare
Mark Rowland
+ Discussion of `Multiscale Fisher's Independence Test for Multivariate Dependence' 2023 Antonin Schrab
Wittawat Jitkrittum
ZoltĂĄn SzabĂł
Dino Sejdinović
Arthur Gretton
+ PDF Chat Kernel methods for causal functions: dose, heterogeneous and incremental response curves 2023 Rahul Singh
Liying Xu
Arthur Gretton
+ PDF Chat Kernel Methods for Multistage Causal Inference: Mediation Analysis and Dynamic Treatment Effects 2023 Rahul Singh
Liyuan Xu
Arthur Gretton
+ PDF Chat A kernel Stein test for comparing latent variable models 2023 Heishiro Kanagawa
Wittawat Jitkrittum
Lester Mackey
Kenji Fukumizu
Arthur Gretton
+ Deep Hypothesis Tests Detect Clinically Relevant Subgroup Shifts in Medical Images 2023 Lisa M. Koch
Christian M. SchĂŒrch
Christian F. Baumgartner
Arthur Gretton
Philipp Berens
+ MMD-FUSE: Learning and Combining Kernels for Two-Sample Testing Without Data Splitting 2023 Felix Biggs
Antonin Schrab
Arthur Gretton
+ Prediction under Latent Subgroup Shifts with High-Dimensional Observations 2023 William I. Walker
Arthur Gretton
Maneesh Sahani
+ Nonlinear Meta-Learning Can Guarantee Faster Rates 2023 Dimitri Meunier
Li Zhu
Arthur Gretton
Samory Kpotufe
+ Kernel Single Proxy Control for Deterministic Confounding 2023 Liyuan Xu
Arthur Gretton
+ Distributional Bellman Operators over Mean Embeddings 2023 Li Kevin Wenliang
Grégoire Delétang
Matthew Aitchison
Marcus HĂŒtter
Anian Ruoss
Arthur Gretton
Mark Rowland
+ Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm 2023 Zhu Li
Dimitri Meunier
Mattes Mollenhauer
Arthur Gretton
+ PDF Chat Stein’s Method Meets Computational Statistics: A Review of Some Recent Developments 2022 Andreas Anastasiou
Alessandro Barp
François‐Xavier Briol
Bruno Ebner
Robert E. Gaunt
Fatemeh Ghaderinezhad
Jackson Gorham
Arthur Gretton
Christophe Ley
Qiang Liu
+ PDF Chat Discussion of ‘Multi-scale Fisher’s independence test for multivariate dependence’ 2022 Antonin Schrab
Wittawat Jitkrittum
ZoltĂĄn SzabĂł
Dino Sejdinović
Arthur Gretton
+ PDF Chat KSD Aggregated Goodness-of-fit Test 2022 Antonin Schrab
Benjamin Guedj
Arthur Gretton
+ Importance Weighting Approach in Kernel Bayes' Rule 2022 Liyuan Xu
Yutian Chen
Arnaud Doucet
Arthur Gretton
+ KSD Aggregated Goodness-of-fit Test 2022 Antonin Schrab
Benjamin Guedj
Arthur Gretton
+ Efficient Aggregated Kernel Tests using Incomplete $U$-statistics 2022 Antonin Schrab
Ilmun Kim
Benjamin Guedj
Arthur Gretton
+ Causal Inference with Treatment Measurement Error: A Nonparametric Instrumental Variable Approach 2022 Yuchen Zhu
Limor Gultchin
Arthur Gretton
Matt J. Kusner
Ricardo Silva
+ Optimal Rates for Regularized Conditional Mean Embedding Learning 2022 Zhu Li
Dimitri Meunier
Mattes Mollenhauer
Arthur Gretton
+ A Neural Mean Embedding Approach for Back-door and Front-door Adjustment 2022 Liyuan Xu
Arthur Gretton
+ Maximum Likelihood Learning of Unnormalized Models for Simulation-Based Inference 2022 Pierre Glaser
Michael Arbel
Arnaud Doucet
Arthur Gretton
+ Controlling Moments with Kernel Stein Discrepancies 2022 Heishiro Kanagawa
Arthur Gretton
Lester Mackey
+ Efficient Conditionally Invariant Representation Learning 2022 Roman Pogodin
Namrata Deka
Yazhe Li
Danica J. Sutherland
Victor Veitch
Arthur Gretton
+ Adapting to Latent Subgroup Shifts via Concepts and Proxies 2022 Ibrahim Alabdulmohsin
Nicole Chiou
Alexander D’Amour
Arthur Gretton
Sanmi Koyejo
Matt J. Kusner
Stephen Pfohl
Olawale Salaudeen
Jessica Schrouff
Katherine Tsai
+ A kernel Stein test of goodness of fit for sequential models 2022 Jerome Baum
Heishiro Kanagawa
Arthur Gretton
+ Deep Layer-wise Networks Have Closed-Form Weights 2022 Chieh Wu
Aria Masoomi
Arthur Gretton
Jennifer Dy
+ PDF Chat KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support 2021 Pierre Glaser
Michael Arbel
Arthur Gretton
+ Self-Supervised Learning with Kernel Dependence Maximization 2021 Yazhe Li
Roman Pogodin
Danica J. Sutherland
Arthur Gretton
+ Composite Goodness-of-fit Tests with Kernels. 2021 Oscar Key
Tamara FernĂĄndez
Arthur Gretton
François‐Xavier Briol
+ PDF Chat Kernel Methods for Multistage Causal Inference: Mediation Analysis and Dynamic Treatment Effects 2021 Rahul Singh
Liyuan Xu
Arthur Gretton
+ PDF Chat MMD Aggregated Two-Sample Test 2021 Antonin Schrab
Ilmun Kim
MĂ©lisande Albert
BĂ©atrice Laurent
Benjamin Guedj
Arthur Gretton
+ PDF Chat A Kernel Log-Rank Test of Independence for Right-Censored Data 2021 Tamara FernĂĄndez
Arthur Gretton
David Rindt
Dino Sejdinović
+ Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction 2021 Afsaneh Mastouri
Yuchen Zhu
Limor Gultchin
Anna Korba
Ricardo Silva
Matt J. Kusner
Arthur Gretton
Krikamol Muandet
+ PDF Chat Deep Proxy Causal Learning and its Application to Confounded Bandit Policy Evaluation 2021 Liyuan Xu
Heishiro Kanagawa
Arthur Gretton
+ Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction 2021 Afsaneh Mastouri
Yuchen Zhu
Limor Gultchin
Anna Korba
Ricardo Silva
Matt J. Kusner
Arthur Gretton
Krikamol Muandet
+ Stein's Method Meets Statistics: A Review of Some Recent Developments 2021 Andreas Anastasiou
Alessandro Barp
François‐Xavier Briol
Bruno Ebner
Robert E. Gaunt
Fatemeh Ghaderinezhad
Jackson Gorham
Arthur Gretton
Christophe Ley
Qiang Liu
+ A Kernel Log-Rank Test of Independence for Right-Censored Data 2021 Tamara FernĂĄndez
Arthur Gretton
David Rindt
Dino Sejdinović
+ On Instrumental Variable Regression for Deep Offline Policy Evaluation 2021 Yutian Chen
Liyuan Xu
Çaǧlar GĂŒlçehre
Tom Le Paine
Arthur Gretton
Nando de Freitas
Arnaud Doucet
+ Self-Supervised Learning with Kernel Dependence Maximization 2021 Yazhe Li
Roman Pogodin
Danica J. Sutherland
Arthur Gretton
+ Towards an Understanding of Benign Overfitting in Neural Networks 2021 Li Zhu
Zhi‐Hua Zhou
Arthur Gretton
+ Deep Proxy Causal Learning and its Application to Confounded Bandit Policy Evaluation 2021 Liyuan Xu
Heishiro Kanagawa
Arthur Gretton
+ Sequential Kernel Embedding for Mediated and Time-Varying Dose Response Curves 2021 Rahul Singh
Liyuan Xu
Arthur Gretton
+ Composite Goodness-of-fit Tests with Kernels 2021 Oscar Key
Tamara FernĂĄndez
Arthur Gretton
François‐Xavier Briol
+ MMD Aggregated Two-Sample Test 2021 Antonin Schrab
Ilmun Kim
MĂ©lisande Albert
BĂ©atrice Laurent
Benjamin Guedj
Arthur Gretton
+ KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support 2021 Pierre Glaser
Michael Arbel
Arthur Gretton
+ Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction 2021 Afsaneh Mastouri
Yuchen Zhu
Limor Gultchin
Anna Korba
Ricardo Silva
Matt J. Kusner
Arthur Gretton
Krikamol Muandet
+ Stein's Method Meets Computational Statistics: A Review of Some Recent Developments 2021 Andreas Anastasiou
Alessandro Barp
François‐Xavier Briol
Bruno Ebner
Robert E. Gaunt
Fatemeh Ghaderinezhad
Jackson Gorham
Arthur Gretton
Christophe Ley
Qiang Liu
+ A kernel test for quasi-independence. 2020 Tamara FernĂĄndez
Wenkai Xu
Marc Ditzhaus
Arthur Gretton
+ PDF Chat Learning Deep Features in Instrumental Variable Regression 2020 Liyuan Xu
Yutian Chen
Siddarth Srinivasan
Nando de Freitas
Arnaud Doucet
Arthur Gretton
+ Kernel Methods for Policy Evaluation: Treatment Effects, Mediation Analysis, and Off-Policy Planning. 2020 Rahul Singh
Liyuan Xu
Arthur Gretton
+ Reproducing Kernel Methods for Nonparametric and Semiparametric Treatment Effects 2020 Rahul Singh
Liyuan Xu
Arthur Gretton
+ PDF Chat Kernel Methods for Causal Functions: Dose Response Curves and Heterogeneous Treatment Effects 2020 Rahul Singh
Liyuan Xu
Arthur Gretton
+ Kernelized Stein Discrepancy Tests of Goodness-of-fit for Time-to-Event Data 2020 Tamara FernĂĄndez
NicolĂĄs Rivera
Wenkai Xu
Arthur Gretton
+ Layer-wise Learning of Kernel Dependence Networks 2020 Chieh Wu
Aria Masoomi
Arthur Gretton
Jennifer Dy
+ Kernelized Wasserstein Natural Gradient 2020 Michael Arbel
Arthur Gretton
Weikai Li
Guido MontĂșfar
+ Generalized Energy Based Models 2020 Michael Arbel
Zhou Liang
Arthur Gretton
+ PDF Chat Model-based kernel sum rule: kernel Bayesian inference with probabilistic models 2020 Yu Nishiyama
Motonobu Kanagawa
Arthur Gretton
Kenji Fukumizu
+ Learning Deep Kernels for Non-Parametric Two-Sample Tests 2020 Feng Liu
Wenkai Xu
Jie LĂŒ
Guangquan Zhang
Arthur Gretton
Danica J. Sutherland
+ Kernelized Stein Discrepancy Tests of Goodness-of-fit for Time-to-Event Data 2020 Wenkai Xu
Tamara FernĂĄndez
NicolĂĄs Rivera
Arthur Gretton
+ A Non-Asymptotic Analysis for Stein Variational Gradient Descent 2020 Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
Arthur Gretton
+ Learning Deep Features in Instrumental Variable Regression 2020 Liyuan Xu
Yutian Chen
Siddarth Srinivasan
Nando de Freitas
Arnaud Doucet
Arthur Gretton
+ A Non-Asymptotic Analysis for Stein Variational Gradient Descent 2020 Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
Arthur Gretton
+ A kernel test for quasi-independence 2020 Tamara FernĂĄndez
Wenkai Xu
Marc Ditzhaus
Arthur Gretton
+ Kernel Dependence Network 2020 Chieh Wu
Aria Masoomi
Arthur Gretton
Jennifer Dy
+ A case for new neural network smoothness constraints 2020 Mihaela Rosca
Théophane Weber
Arthur Gretton
Shakir Mohamed
+ Reproducing Kernel Methods for Nonparametric and Semiparametric Treatment Effects 2020 Rahul Singh
Liyuan Xu
Arthur Gretton
+ Deep Layer-wise Networks Have Closed-Form Weights 2020 Chieh Wu
Aria Masoomi
Arthur Gretton
Jennifer Dy
+ A kernel test for quasi-independence 2020 Tamara FernĂĄndez
Wenkai Xu
Marc Ditzhaus
Arthur Gretton
+ Efficient Wasserstein Natural Gradients for Reinforcement Learning 2020 Ted Moskovitz
Michael Arbel
Ferenc HuszĂĄr
Arthur Gretton
+ Generalized Energy Based Models 2020 Michael Arbel
Liang Zhou
Arthur Gretton
+ Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves 2020 Rahul Singh
Liyuan Xu
Arthur Gretton
+ A Weaker Faithfulness Assumption based on Triple Interactions 2020 Alexander Marx
Arthur Gretton
Joris M. Mooij
+ Kernel Instrumental Variable Regression 2019 Rahul Singh
Maneesh Sahani
Arthur Gretton
+ Kernel Instrumental Variable Regression 2019 Rahul Singh
Maneesh Sahani
Arthur Gretton
+ Exponential Family Estimation via Adversarial Dynamics Embedding 2019 Bo Dai
Zhen Liu
Hanjun Dai
Niao He
Arthur Gretton
Le Song
Dale Schuurmans
+ Kernel exponential family estimation via doubly dual embedding 2019 Bo Dai
Hanjun Dai
Arthur Gretton
Le Song
Dale Schuurmans
Niao He
+ PDF Chat Antithetic and Monte Carlo kernel estimators for partial rankings 2019 MarĂ­a LomelĂ­
Mark Rowland
Arthur Gretton
Zoubin Ghahramani
+ Maximum Mean Discrepancy Gradient Flow 2019 Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
+ A Kernel Stein Test for Comparing Latent Variable Models 2019 Heishiro Kanagawa
Wittawat Jitkrittum
Lester Mackey
Kenji Fukumizu
Arthur Gretton
+ Counterfactual Distribution Regression for Structured Inference 2019 NicolĂČ Colombo
Ricardo Silva
Soong Moon Kang
Arthur Gretton
+ Exponential Family Estimation via Adversarial Dynamics Embedding 2019 Bo Dai
Zhen Liu
Hanjun Dai
Niao He
Arthur Gretton
Le Song
Dale Schuurmans
+ Kernelized Wasserstein Natural Gradient 2019 Michael Arbel
Arthur Gretton
Wuchen Li
Guido MontĂșfar
+ A kernel log-rank test of independence for right-censored data 2019 Tamara FernĂĄndez
Arthur Gretton
David Rindt
Dino Sejdinović
+ Kernel Instrumental Variable Regression 2019 Rahul Singh
Maneesh Sahani
Arthur Gretton
+ Informative Features for Model Comparison 2018 Wittawat Jitkrittum
Heishiro Kanagawa
Patsorn Sangkloy
James Hays
Bernhard Schölkopf
Arthur Gretton
+ Learning deep kernels for exponential family densities 2018 Li Kevin Wenliang
Danica J. Sutherland
Heiko Strathmann
Arthur Gretton
+ A maximum-mean-discrepancy goodness-of-fit test for censored data 2018 Tamara FernĂĄndez
Arthur Gretton
+ Antithetic and Monte Carlo kernel estimators for partial rankings 2018 MarĂ­a LomelĂ­
Mark Rowland
Arthur Gretton
Zoubin Ghahramani
+ Efficient and principled score estimation with Nyström kernel exponential families 2018 Danica J. Sutherland
Heiko Strathmann
Michael Arbel
Arthur Gretton
+ A Generative Deep Recurrent Model for Exchangeable Data 2018 Iryna Korshunova
Jonas Degrave
Ferenc HuszĂĄr
Yarin Gal
Arthur Gretton
Joni Dambre
+ Demystifying MMD GANs 2018 MikoƂaj BiƄkowski
Danica J. Sutherland
Michael Arbel
Arthur Gretton
+ On gradient regularizers for MMD GANs 2018 Michael Arbel
Danica J. Sutherland
MikoƂaj BiƄkowski
Arthur Gretton
+ Kernel Exponential Family Estimation via Doubly Dual Embedding 2018 Bo Dai
Hanjun Dai
Arthur Gretton
Le Song
Dale Schuurmans
Niao He
+ Informative Features for Model Comparison 2018 Wittawat Jitkrittum
Heishiro Kanagawa
Patsorn Sangkloy
James Hays
Bernhard Schölkopf
Arthur Gretton
+ BRUNO: A Deep Recurrent Model for Exchangeable Data 2018 Iryna Korshunova
Jonas Degrave
Ferenc HuszĂĄr
Yarin Gal
Arthur Gretton
Joni Dambre
+ Learning deep kernels for exponential family densities 2018 Li Kevin Wenliang
Danica J. Sutherland
Heiko Strathmann
Arthur Gretton
+ A maximum-mean-discrepancy goodness-of-fit test for censored data 2018 Tamara FernĂĄndez
Arthur Gretton
+ Antithetic and Monte Carlo kernel estimators for partial rankings 2018 MarĂ­a LomelĂ­
Mark Rowland
Arthur Gretton
Zoubin Ghahramani
+ Demystifying MMD GANs 2018 MikoƂaj BiƄkowski
Danica J. Sutherland
Michael Arbel
Arthur Gretton
+ PDF Chat A Linear-Time Kernel Goodness-of-Fit Test 2017 Wittawat Jitkrittum
Wenkai Xu
ZoltĂĄn SzabĂł
Kenji Fukumizu
Arthur Gretton
+ Kernel Conditional Exponential Family. 2017 Michael Arbel
Arthur Gretton
+ Density Estimation in Infinite Dimensional Exponential Families 2017 Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Aapo HyvÀrinen
Revant Kumar
+ PDF Chat GP-Select: Accelerating EM Using Adaptive Subspace Preselection 2017 Jacquelyn A. Shelton
Jan Gasthaus
Zhenwen Dai
Jörg LĂŒcke
Arthur Gretton
+ Efficient and principled score estimation. 2017 Danica J. Sutherland
Heiko Strathmann
Michael Arbel
Arthur Gretton
+ Efficient and principled score estimation with Nystr\"om kernel exponential families 2017 Danica J. Sutherland
Heiko Strathmann
Michael Arbel
Arthur Gretton
+ PDF Chat Large-scale kernel methods for independence testing 2017 Qinyi Zhang
Sarah Filippi
Arthur Gretton
Dino Sejdinović
+ A Linear-Time Kernel Goodness-of-Fit Test 2017 Wittawat Jitkrittum
Wenkai Xu
ZoltĂĄn SzabĂł
Kenji Fukumizu
Arthur Gretton
+ Kernel Conditional Exponential Family 2017 Michael Arbel
Arthur Gretton
+ Efficient and principled score estimation with Nyström kernel exponential families 2017 Danica J. Sutherland
Heiko Strathmann
Michael Arbel
Arthur Gretton
+ Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy 2016 Danica J. Sutherland
Hsiao-Yu Fish Tung
Heiko Strathmann
Soumyajit De
Aaditya Ramdas
Alex Smola
Arthur Gretton
+ PDF Chat MERLiN: Mixture Effect Recovery in Linear Networks 2016 Sebastian Weichwald
Moritz Grosse‐Wentrup
Arthur Gretton
+ Kernel techniques for adaptive Monte Carlo methods 2016 Heiko Strathmann
Dino Sejdinović
Samuel A. Livingston
Ingmar Schuster
Maria Lomeli Garcia
ZoltĂĄn SzabĂł
Christophe Andrieu
Arthur Gretton
+ A kernel test for three-variable interactions with random processes 2016 Paul K. Rubenstein
Kacper Chwialkowski
Arthur Gretton
+ A kernel test of goodness of fit 2016 Kacper Chwialkowski
Heiko Strathmann
Arthur Gretton
+ PDF Chat Recovery of non-linear cause-effect relationships from linearly mixed neuroimaging data 2016 Sebastian Weichwald
Arthur Gretton
Bernhard Schölkopf
Moritz Grosse‐Wentrup
+ Interpretable Distribution Features with Maximum Testing Power 2016 Wittawat Jitkrittum
ZoltĂĄn SzabĂł
Kacper Chwialkowski
Arthur Gretton
+ Distribution Regression with Minimax-Optimal Guarantee 2016 ZoltĂĄn SzabĂł
B Sriperumbudur
BarnabĂĄs PĂłczos
Arthur Gretton
+ A Kernel Test of Goodness of Fit 2016 Kacper Chwialkowski
Heiko Strathmann
Arthur Gretton
+ A Kernel Test for Three-Variable Interactions with Random Processes 2016 Paul K. Rubenstein
Kacper Chwialkowski
Arthur Gretton
+ Fast Non-Parametric Tests of Relative Dependency and Similarity 2016 Wacha Bounliphone
Eugene Belilovsky
Arthur Tenenhaus
Ioannis Antonoglou
Arthur Gretton
Matthew B. Blashcko
+ Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy 2016 Danica J. Sutherland
Hsiao-Yu Fish Tung
Heiko Strathmann
Soumyajit De
Aaditya Ramdas
Alex Smola
Arthur Gretton
+ An Adaptive Test of Independence with Analytic Kernel Embeddings 2016 Wittawat Jitkrittum
ZoltĂĄn SzabĂł
Arthur Gretton
+ Kernel mean shrinkage estimators 2016 Krikamol Muandet
Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Bernhard Schölkopf
+ Learning theory for distribution regression 2016 ZoltĂĄn SzabĂł
Bharath K. Sriperumbudur
BarnabĂĄs PĂłczos
Arthur Gretton
+ Interpretable Distribution Features with Maximum Testing Power 2016 Wittawat Jitkrittum
ZoltĂĄn SzabĂł
Kacper Chwialkowski
Arthur Gretton
+ Interpretable Distribution Features with Maximum Testing Power 2016 Wittawat Jitkrittum
ZoltĂĄn SzabĂł
Kacper Chwialkowski
Arthur Gretton
+ A Kernel Test of Goodness of Fit 2016 Kacper Chwialkowski
Heiko Strathmann
Arthur Gretton
+ PDF Chat Filtering with State-Observation Examples via Kernel Monte Carlo Filter 2015 Motonobu Kanagawa
Yu Nishiyama
Arthur Gretton
Kenji Fukumizu
+ Learning Theory for Vector-Valued Distribution Regression 2015 ZoltĂĄn SzabĂł
B Sriperumbudur
BarnabĂĄs PĂłczos
Arthur Gretton
+ Fast two-sample testing with analytic representations of probability measures 2015 Kacper Chwialkowski
Aaditya Ramdas
Dino Sejdinović
Arthur Gretton
+ Gradient-free Hamiltonian Monte Carlo with efficient kernel exponential families 2015 Heiko Strathmann
Dino Sejdinović
Samuel Livingstone
ZoltĂĄn SzabĂł
Arthur Gretton
+ Distribution Regression: Computational and Statistical Tradeoffs 2015 ZoltĂĄn SzabĂł
B Sriperumbudur
BarnabĂĄs PĂłczos
Arthur Gretton
+ A Test of Relative Similarity 2015 Wacha Bounliphone
Eugene Belilovsky
Matthew B. Blaschko
Ioannis Antonoglou
Arthur Gretton
+ Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages 2015 Wittawat Jitkrittum
Arthur Gretton
Nicolas Heess
S. M. Ali Eslami
Balaji Lakshminarayanan
Dino Sejdinović
ZoltĂĄn SzabĂł
+ Consistent Vector-valued Distribution Regression 2015 ZoltĂĄn SzabĂł
Arthur Gretton
BarnabĂĄs PĂłczos
B Sriperumbudur
+ Passing Expectation Propagation Messages with Kernel Methods 2015 Wittawat Jitkrittum
Arthur Gretton
Nicolas Heess
+ A simpler condition for consistency of a kernel independence test 2015 Arthur Gretton
+ A Test of Relative Similarity For Model Selection in Generative Models 2015 Wacha Bounliphone
Eugene Belilovsky
Matthew B. Blaschko
Ioannis Antonoglou
Arthur Gretton
+ Fast two-sample testing with analytic representations of probability measures 2015 Kacper Chwialkowski
Aaditya Ramdas
Dino Sejdinović
Arthur Gretton
+ Fast Two-Sample Testing with Analytic Representations of Probability Measures 2015 Kacper Chwialkowski
Aaditya Ramdas
Dino Sejdinović
Arthur Gretton
+ Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families 2015 Heiko Strathmann
Dino Sejdinović
Samuel Livingstone
ZoltĂĄn SzabĂł
Arthur Gretton
+ Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages 2015 Wittawat Jitkrittum
Arthur Gretton
Nicolas Heess
S. M. Ali Eslami
Balaji Lakshminarayanan
Dino Sejdinović
ZoltĂĄn SzabĂł
+ Passing Expectation Propagation Messages with Kernel Methods 2015 Wittawat Jitkrittum
Arthur Gretton
Nicolas Heess
+ Kernel non-parametric tests of relative dependency 2014 Wacha Bounliphone
Arthur Gretton
Matthew B. Blaschko
+ GP-select: Accelerating EM using adaptive subspace preselection 2014 Jacquelyn A. Shelton
Jan Gasthaus
Zhenwen Dai
Joerg Luecke
Arthur Gretton
+ A Wild Bootstrap for Degenerate Kernel Tests 2014 Kacper Chwialkowski
Dino Sejdinović
Arthur Gretton
+ Learning Theory for Distribution Regression 2014 ZoltĂĄn SzabĂł
Bharath K. Sriperumbudur
BarnabĂĄs PĂłczos
Arthur Gretton
+ Model-based Kernel Sum Rule 2014 Yu Nishiyama
Motonobu Kanagawa
Arthur Gretton
Kenji Fukumizu
+ Simple consistent distribution regression on compact metric domains 2014 ZoltĂĄn SzabĂł
Arthur Gretton
BarnabĂĄs PĂłczos
B Sriperumbudur
+ A Wild Bootstrap for Degenerate Kernel Tests 2014 Kacper Chwialkowski
Dino Sejdinović
Arthur Gretton
+ Kernel Adaptive Metropolis-Hastings 2014 Dino Sejdinović
Heiko Strathmann
Maria Lomeli Garcia
Christophe Andrieu
Arthur Gretton
+ Distribution Regression - the Set Kernel Heuristic is Consistent 2014 ZoltĂĄn SzabĂł
Arthur Gretton
BarnabĂĄs PĂłczos
B Sriperumbudur
+ A Kernel Independence Test for Random Processes 2014 Kacper Chwialkowski
Arthur Gretton
+ Consistent, Two-Stage Sampled Distribution Regression via Mean Embedding. 2014 ZoltĂĄn SzabĂł
Arthur Gretton
BarnabĂĄs PĂłczos
Bharath K. Sriperumbudur
+ A Kernel Independence Test for Random Processes 2014 Kacper Chwialkowski
Arthur Gretton
+ Kernel Mean Shrinkage Estimators 2014 Krikamol Muandet
Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Bernhard Schölkopf
+ Two-stage Sampled Learning Theory on Distributions 2014 ZoltĂĄn SzabĂł
Arthur Gretton
BarnabĂĄs PĂłczos
Bharath K. Sriperumbudur
+ A low variance consistent test of relative dependency 2014 Wacha Bounliphone
Arthur Gretton
Arthur Tenenhaus
Matthew B. Blaschko
+ Dependent Pairs of Maximum Mean Descrepancy Tests 2014 Ioannis Antonoglou
Matthew B. Blaschko
Arthur Gretton
+ Model-based Kernel Sum Rule: Kernel Bayesian Inference with Probabilistic Models 2014 Yu Nishiyama
Motonobu Kanagawa
Arthur Gretton
Kenji Fukumizu
+ Learning Theory for Distribution Regression 2014 ZoltĂĄn SzabĂł
Bharath K. Sriperumbudur
BarnabĂĄs PĂłczos
Arthur Gretton
+ A Wild Bootstrap for Degenerate Kernel Tests 2014 Kacper Chwialkowski
Dino Sejdinović
Arthur Gretton
+ Kernel Monte Carlo Filter 2013 Motonobu Kanagawa
Yu Nishiyama
Arthur Gretton
Kenji Fukumizu
+ A Kernel Test for Three-Variable Interactions 2013 Dino Sejdinović
Arthur Gretton
Wicher Bergsma
+ B -tests: low variance kernel two-sample tests 2013 Wojciech Zaremba
Arthur Gretton
Matthew B. Blaschko
+ PDF Chat B-tests: Low Variance Kernel Two-Sample Tests 2013 Wojciech Zaremba
Arthur Gretton
Matthew B. Blaschko
+ Equivalence of distance-based and RKHS-based statistics in hypothesis testing 2013 Dino Sejdinović
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
+ B-test: A Non-parametric, Low Variance Kernel Two-sample Test 2013 Wojciech Zaremba
Arthur Gretton
Matthew B. Blaschko
+ Smooth Operators 2013 Steffen GrĂŒnewĂ€lder
Arthur Gretton
John Shawe‐Taylor
+ A Kernel Test for Three-Variable Interactions 2013 Dino Sejdinović
Arthur Gretton
Wicher Bergsma
+ Kernel Mean Estimation and Stein's Effect 2013 Krikamol Muandet
Kenji Fukumizu
Bharath K. Sriperumbudur
Arthur Gretton
Bernhard Schölkopf
+ Density Estimation in Infinite Dimensional Exponential Families 2013 Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Aapo HyvÀrinen
Revant Kumar
+ B-tests: Low Variance Kernel Two-Sample Tests 2013 Wojciech Zaremba
Arthur Gretton
Matthew B. Blaschko
+ B-test: A Non-parametric, Low Variance Kernel Two-sample Test 2013 Wojciech Zaremba
Arthur Gretton
Matthew B. Blaschko
+ Kernel Bayes' rule: Bayesian inference with positive definite kernels 2013 Kenji Fukumizu
Le Song
Arthur Gretton
+ Kernel Adaptive Metropolis-Hastings 2013 Dino Sejdinović
Heiko Strathmann
Maria Lomeli Garcia
Christophe Andrieu
Arthur Gretton
+ Filtering with State-Observation Examples via Kernel Monte Carlo Filter 2013 Motonobu Kanagawa
Yu Nishiyama
Arthur Gretton
Kenji Fukumizu
+ Hilbert Space Embeddings of Predictive State Representations 2013 Byron Boots
Geoffrey J. Gordon
Arthur Gretton
+ Kernel Mean Estimation and Stein's Effect 2013 Krikamol Muandet
Kenji Fukumizu
Bharath K. Sriperumbudur
Arthur Gretton
Bernhard Schölkopf
+ A Kernel Test for Three-Variable Interactions 2013 Dino Sejdinović
Arthur Gretton
Wicher Bergsma
+ Optimal kernel choice for large-scale two-sample tests 2012 Arthur Gretton
Dino Sejdinović
Heiko Strathmann
Sivaraman Balakrishnan
Massimiliano Pontil
Kenji Fukumizu
Bharath K. Sriperumbudur
+ Hilbert space embeddings of POMDPs 2012 Yu Nishiyama
Abdeslam Boularias
Arthur Gretton
Kenji Fukumizu
+ Modelling transition dynamics in MDPs with RKHS embeddings 2012 Guy Lever
Luca Baldassarre
Arthur Gretton
Massimiliano Pontil
Steffen Gr new lder
+ Hypothesis testing using pairwise distances and associated kernels 2012 Dino Sejdinović
Arthur Gretton
Kenji Fukumizu
Bharath K. Sriperumbudur
+ Modelling transition dynamics in MDPs with RKHS embeddings 2012 Steffen GrĂŒnewĂ€lder
Guy Lever
Luca Baldassarre
Massi Pontil
Arthur Gretton
+ Hypothesis testing using pairwise distances and associated kernels 2012 Dino Sejdinović
Arthur Gretton
Bharath K. Sriperumbudur
Kenji Fukumizu
+ A kernel two-sample test 2012 Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alexander J. Smola
+ Conditional mean embeddings as regressors - supplementary 2012 Steffen GrĂŒnewĂ€lder
Guy Lever
Luca Baldassarre
Sam Patterson
Arthur Gretton
Massimiliano Pontil
+ Hypothesis testing using pairwise distances and associated kernels (with Appendix) 2012 Dino Sejdinović
Arthur Gretton
Bharath K. Sriperumbudur
Kenji Fukumizu
+ PDF Chat On the empirical estimation of integral probability metrics 2012 Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Bernhard Schölkopf
Gert Lanckriet
+ Hilbert Space Embeddings of POMDPs 2012 Yu Nishiyama
Abdeslam Boularias
Arthur Gretton
Kenji Fukumizu
+ Modelling transition dynamics in MDPs with RKHS embeddings 2012 Steffen GrĂŒnewĂ€lder
Guy Lever
Luca Baldassarre
Massi Pontil
Arthur Gretton
+ Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees 2011 Joseph E. Gonzalez
Yucheng Low
Arthur Gretton
Carlos Guestrin
+ Kernel Belief Propagation 2011 Le Song
Arthur Gretton
Danny Bickson
Yucheng Low
Carlos Guestrin
+ Modeling transition dynamics in MDPs with RKHS embeddings of conditional distributions 2011 Steffen GrĂŒnewĂ€lder
Luca Baldassarre
Massimiliano Pontil
Arthur Gretton
Guy Lever
+ Kernel Belief Propagation 2011 Le Song
Arthur Gretton
Danny Bickson
Yucheng Low
Carlos Guestrin
+ Kernel Bayes' rule 2010 Kenji Fukumizu
Le Song
Arthur Gretton
+ Non-parametric estimation of integral probability metrics 2010 Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Bernhard Schölkopf
Gert Lanckriet
+ Hilbert Space Embeddings and Metrics on Probability Measures 2010 Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
Bernhard Schölkopf
Gert Lanckriet
+ Consistent Nonparametric Tests of Independence 2010 Arthur Gretton
Låszló Györfi
+ Kernel Bayes' rule 2010 Kenji Fukumizu
Le Song
Arthur Gretton
+ A Fast, Consistent Kernel Two-Sample Test 2009 Arthur Gretton
Kenji Fukumizu
ZaĂŻd Harchaoui
Bharath K. Sriperumbudur
+ Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions 2009 Kenji Fukumizu
Arthur Gretton
Gert Lanckriet
Bernhard Schölkopf
Bharath K. Sriperumbudur
+ PDF Chat Discussion of: Brownian distance covariance 2009 Arthur Gretton
Kenji Fukumizu
Bharath K. Sriperumbudur
+ Hilbert space embeddings and metrics on probability measures 2009 Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
Bernhard Schölkopf
Gert Lanckriet
+ A note on integral probability metrics and $\phi$-divergences 2009 Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
Gert Lanckriet
Bernhard Schölkopf
+ On integral probability metrics, ϕ-divergences and binary classification 2009 Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Bernhard Schölkopf
Gert Lanckriet
+ Hilbert space embeddings and metrics on probability measures 2009 Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
Bernhard Schölkopf
Gert Lanckriet
+ PDF Chat Nonparametric Independence Tests: Space Partitioning and Kernel Approaches 2008 Arthur Gretton
Låszló Györfi
+ A Kernel Method for the Two-Sample Problem 2008 Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alexander J. Smola
+ Kernel Measures of Conditional Dependence 2007 Kenji Fukumizu
Arthur Gretton
Xiaohai Sun
Bernhard Schölkopf
+ Hilbert Space Representations of Probability Distributions 2007 Arthur Gretton
+ PDF Chat A Kernel Method for the Two-Sample-Problem 2007 Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alexander J. Smola
+ A kernel approach to comparing distributions 2007 Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alexander J. Smola
+ Supervised Feature Selection via Dependence Estimation 2007 Le Song
Alex Smola
Arthur Gretton
Karsten Borgwardt
Justin BedƑ
+ Kernel Methods for Measuring Independence 2005 Arthur Gretton
Ralf Herbrich
Alexander J. Smola
Olivier Bousquet
Bernhard Schölkopf
+ Behaviour and Convergence of the Constrained Covariance 2004 Arthur Gretton
Bousquet Smola A
Schölkopf Herbrich R
NK Logothetis
+ PDF Chat The kernel mutual information 2004 Arthur Gretton
Ralf Herbrich
Alex Smola
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ A kernel two-sample test 2012 Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alexander J. Smola
48
+ Hilbert Space Embeddings and Metrics on Probability Measures 2010 Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
Bernhard Schölkopf
Gert Lanckriet
41
+ Kernel Measures of Conditional Dependence 2007 Kenji Fukumizu
Arthur Gretton
Xiaohai Sun
Bernhard Schölkopf
40
+ PDF Chat Dimensionality Reduction for Supervised Learning With Reproducing Kernel Hilbert Spaces 2003 Kenji Fukumizu
Francis R. Bach
Michael I. Jordan
29
+ Integral Probability Metrics and Their Generating Classes of Functions 1997 Alfred MĂŒller
24
+ PDF Chat A Kernel Method for the Two-Sample-Problem 2007 Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alexander J. Smola
23
+ Optimal kernel choice for large-scale two-sample tests 2012 Arthur Gretton
Dino Sejdinović
Heiko Strathmann
Sivaraman Balakrishnan
Massimiliano Pontil
Kenji Fukumizu
Bharath K. Sriperumbudur
18
+ Real Analysis and Probability 1972 16
+ PDF Chat Measuring and testing dependence by correlation of distances 2007 Gåbor J. Székely
Maria L. Rizzo
Н. К. БаĐșĐžŃ€ĐŸĐČ
16
+ A Fast, Consistent Kernel Two-Sample Test 2009 Arthur Gretton
Kenji Fukumizu
ZaĂŻd Harchaoui
Bharath K. Sriperumbudur
15
+ Equivalence of distance-based and RKHS-based statistics in hypothesis testing 2013 Dino Sejdinović
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
15
+ PDF Chat Joint measures and cross-covariance operators 1973 C. Richard Baker
14
+ Consistent Nonparametric Tests of Independence 2010 Arthur Gretton
Låszló Györfi
13
+ Kernel-based Conditional Independence Test and Application in Causal Discovery 2012 Kun Zhang
Jonas Peters
Dominik Janzing
Bernhard Schölkopf
13
+ Efficient svm training using low-rank kernel representations 2002 Shai Fine
Katya Scheinberg
12
+ Kernel Methods for Measuring Independence 2005 Arthur Gretton
Ralf Herbrich
Alexander J. Smola
Olivier Bousquet
Bernhard Schölkopf
12
+ Distance covariance in metric spaces 2013 Russell Lyons
11
+ Kernel Belief Propagation 2011 Le Song
Arthur Gretton
Danny Bickson
Yucheng Low
Carlos Guestrin
11
+ A Consistent Test for Bivariate Dependence 1993 Andrey Feuerverger
11
+ PDF Chat Optimal Rates for the Regularized Least-Squares Algorithm 2006 Andrea Caponnetto
Ernesto De Vito
11
+ Testing for Homogeneity with Kernel Fisher Discriminant Analysis 2008 ZaĂŻd Harchaoui
Francis Bach
Éric Moulines
11
+ Two-Sample Test Statistics for Measuring Discrepancies Between Two Multivariate Probability Density Functions Using Kernel-Based Density Estimates 1994 Niall Anderson
Peter A. Hall
D. M. Titterington
11
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
10
+ Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions 2009 Kenji Fukumizu
Arthur Gretton
Gert Lanckriet
Bernhard Schölkopf
Bharath K. Sriperumbudur
10
+ PDF Chat Chapter 77 Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization 2007 Marine Carrasco
Jean‐Pierre Florens
Èric Renault
9
+ On a new multivariate two-sample test 2003 Ludwig Baringhaus
Carsten Franz
9
+ PDF Chat Kernel dimension reduction in regression 2009 Kenji Fukumizu
Francis Bach
Michael I. Jordan
8
+ PDF Chat On the empirical estimation of integral probability metrics 2012 Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Bernhard Schölkopf
Gert Lanckriet
8
+ Dependent wild bootstrap for degenerate<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si65.gif" display="inline" overflow="scroll"><mml:mi>U</mml:mi></mml:math>- and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si66.gif" display="inline" overflow="scroll"><mml:mi>V</mml:mi></mml:math>-statistics 2013 Anne Leucht
Michael H. Neumann
8
+ PDF Chat Multivariate Generalizations of the Wald-Wolfowitz and Smirnov Two-Sample Tests 1979 Jerome H. Friedman
Lawrence C. Rafsky
8
+ PDF Chat On the Bootstrap of $U$ and $V$ Statistics 1992 Miguel A. Arcones
Evarist Giné
8
+ A Kernel Test for Three-Variable Interactions 2013 Dino Sejdinović
Arthur Gretton
Wicher Bergsma
8
+ A Kernel Method for the Two-Sample Problem 2008 Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alexander J. Smola
8
+ Density Estimation in Infinite Dimensional Exponential Families 2017 Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Aapo HyvÀrinen
Revant Kumar
8
+ Harmonic Analysis on Semigroups 1984 Christian Berg
Jens Peter Christensen
Paul Ressel
8
+ PDF Chat Learning Theory Estimates via Integral Operators and Their Approximations 2007 Steve Smale
Ding‐Xuan Zhou
8
+ Consistent testing of total independence based on the empirical characteristic function 1995 Annaliisa Kankainen
8
+ PDF Chat Estimating Divergence Functionals and the Likelihood Ratio by Convex Risk Minimization 2010 XuanLong Nguyen
Martin J. Wainwright
Michael I. Jordan
8
+ PDF Chat A Class of Statistics with Asymptotically Normal Distribution 1992 Wassily Hoeffding
7
+ Kernel Instrumental Variable Regression 2019 Rahul Singh
Maneesh Sahani
Arthur Gretton
7
+ A new test for multivariate normality 2004 Gåbor J. Székely
Maria L. Rizzo
7
+ On the method of bounded differences 1989 Colin McDiarmid
7
+ Mercer’s Theorem on General Domains: On the Interaction between Measures, Kernels, and RKHSs 2012 Ingo Steinwart
Clint Scovel
7
+ A kernel test of goodness of fit 2016 Kacper Chwialkowski
Heiko Strathmann
Arthur Gretton
7
+ Density Estimation in Infinite Dimensional Exponential Families 2013 Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Aapo HyvÀrinen
Revant Kumar
7
+ Spectral Normalization for Generative Adversarial Networks 2018 Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
7
+ PDF Chat Brownian distance covariance 2009 Gåbor J. Székely
Maria L. Rizzo
7
+ f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization 2016 Sebastian Nowozin
Botond Cseke
Ryota Tomioka
7
+ PDF Chat VECTOR VALUED REPRODUCING KERNEL HILBERT SPACES AND UNIVERSALITY 2010 Claudio Carmeli
Ernesto De Vito
Alessandro Toigo
Veronica UmanitĂ 
7
+ Weak Convergence and Empirical Processes 1996 Aad van der Vaart
Jon A. Wellner
7