Giulia Luise

Follow

Generating author description...

All published works
Action Title Year Authors
+ On Over-Squashing in Message Passing Neural Networks: The Impact of Width, Depth, and Topology 2023 Francesco Di Giovanni
Lorenzo Giusti
Federico Barbero
Giulia Luise
PĂ­etro LiĂł
Michael M. Bronstein
+ Bag of Policies for Distributional Deep Exploration 2023 Asen Nachkov
Luchen Li
Giulia Luise
Filippo Valdettaro
A. Aldo Faisal
+ Heterogeneous manifolds for curvature-aware graph embedding 2022 Francesco Di Giovanni
Giulia Luise
Michael M. Bronstein
+ Schedule-Robust Online Continual Learning 2022 Ruohan Wang
Marco Ciccone
Giulia Luise
Massimiliano Pontil
Andrew Yapp
Carlo Ciliberto
+ Meta Optimal Transport 2022 Brandon Amos
S. Cohen
Giulia Luise
Ievgen Redko
+ Enabling risk-aware Reinforcement Learning for medical interventions through uncertainty decomposition. 2021 Paul Festor
Giulia Luise
Matthieu Komorowski
A. Aldo Faisal
+ Enabling risk-aware Reinforcement Learning for medical interventions through uncertainty decomposition 2021 Paul Festor
Giulia Luise
Matthieu Komorowski
A. Aldo Faisal
+ Aligning Time Series on Incomparable Spaces 2020 Samuel N. Cohen
Giulia Luise
Alexander Terenin
Brandon Amos
Marc Peter Deisenroth
+ PDF Chat Contraction and regularizing properties of heat flows in metric measure spaces 2020 Giulia Luise
Giuseppe Savaré
+ Wasserstein Proximal Gradient 2020 Adil Salim
Anna Korba
Giulia Luise
+ The Wasserstein Proximal Gradient Algorithm 2020 Adil Salim
Anna Korba
Giulia Luise
+ A Non-Asymptotic Analysis for Stein Variational Gradient Descent 2020 Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
Arthur Gretton
+ Generalization Properties of Optimal Transport GANs with Latent Distribution Learning 2020 Giulia Luise
Massimiliano Pontil
Carlo Ciliberto
+ A Non-Asymptotic Analysis for Stein Variational Gradient Descent 2020 Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
Arthur Gretton
+ Aligning Time Series on Incomparable Spaces 2020 S. Cohen
Giulia Luise
Alexander Terenin
Brandon Amos
Marc Peter Deisenroth
+ The Wasserstein Proximal Gradient Algorithm 2020 Adil Salim
Anna Korba
Giulia Luise
+ Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm 2019 Giulia Luise
Saverio Salzo
Massimiliano Pontil
Carlo Ciliberto
+ Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm 2019 Giulia Luise
Saverio Salzo
Massimiliano Pontil
Carlo Ciliberto
+ Contraction and regularizing properties of heat flows in metric measure spaces. 2019 Giulia Luise
Giuseppe Savaré
+ PDF Chat Contraction and regularizing properties of heat flows in metric measure spaces 2019 Giulia Luise
Giuseppe Savaré
+ Leveraging Low-Rank Relations Between Surrogate Tasks in Structured Prediction 2019 Giulia Luise
Dimitris Stamos
Massimiliano Pontil
Carlo Ciliberto
+ Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm 2019 Giulia Luise
Saverio Salzo
Massimiliano Pontil
Carlo Ciliberto
+ Contraction and regularizing properties of heat flows in metric measure spaces 2019 Giulia Luise
Giuseppe Savaré
+ PDF Chat Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance 2018 Giulia Luise
Alessandro Rudi
Massimiliano Pontil
Carlo Ciliberto
+ Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance 2018 Giulia Luise
Alessandro Rudi
Massimiliano Pontil
Carlo Ciliberto
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Gradient Flows: In Metric Spaces and in the Space of Probability Measures 2005 Luigi Ambrosio
Nicola Gigli
Giuseppe Savaré
4
+ THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION 2001 FĂ©lix Otto
4
+ On the geometry of Stein variational gradient descent 2019 A. Duncan
N. Nuesken
Ɓukasz Szpruch
2
+ Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem 2018 Andre Wibisono
2
+ Stochastic Proximal Langevin Algorithm: Potential Splitting and Nonasymptotic Rates 2019 Adil Salim
Dmitry Kovalev
Peter RichtĂĄrik
2
+ Stein Variational Gradient Descent as Gradient Flow 2017 Qiang Liu
2
+ PDF Chat Barycenters in the Wasserstein Space 2011 Martial Agueh
Guillaume Carlier
2
+ PDF Chat A constant step Forward-Backward algorithm involving random maximal monotone operators 2018 Pascal Bianchi
Walid Hachem
Adil Salim
2
+ Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm 2016 Qiang Liu
Dilin Wang
2
+ PDF Chat High-dimensional Bayesian inference via the unadjusted Langevin algorithm 2019 Alain Durmus
Éric Moulines
2
+ Convex Analysis and Monotone Operator Theory in Hilbert Spaces 2017 Heinz H. Bauschke
Patrick L. Combettes
2
+ Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices 2019 Santosh Vempala
Andre Wibisono
2
+ The Variational Formulation of the Fokker--Planck Equation 1998 Richard W. Jordan
David Kinderlehrer
FĂ©lix Otto
2
+ Learning Generative Models with Sinkhorn Divergences 2017 Aude Genevay
Gabriel Peyré
Marco Cuturi
2
+ PDF Chat Computational Optimal Transport 2019 Gabriel Peyré
Marco Cuturi
2
+ Analysis of Langevin Monte Carlo via Convex Optimization 2019 Alain Durmus
Szymon Majewski
BƂaĆŒej Miasojedow
2
+ On the Equivalence between Kernel Quadrature Rules and Random Feature Expansions 2015 Francis Bach
2
+ PDF Chat On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces 2014 Matthias Erbar
Kazumasa Kuwada
Karl-Theodor Sturm
1
+ PDF Chat Convexity, Classification, and Risk Bounds 2006 Peter L. Bartlett
Michael I. Jordan
Jon McAuliffe
1
+ Pattern Recognition and Machine Learning 2007 Christopher Bishop
1
+ PDF Chat Faster retrieval with a two-pass dynamic-time-warping lower bound 2008 Daniel Lemire
1
+ Duality on gradient estimates and Wasserstein controls 2010 Kazumasa Kuwada
1
+ PDF Chat Metric measure spaces with Riemannian Ricci curvature bounded from below 2014 Luigi Ambrosio
Nicola Gigli
Giuseppe Savaré
1
+ PDF Chat Learning Theory Estimates via Integral Operators and Their Approximations 2007 Steve Smale
Ding‐Xuan Zhou
1
+ Neue BegrĂŒndung der Theorie quadratischer Formen von unendlichvielen VerĂ€nderlichen. 1909 Ernst Hellinger
1
+ Maximum Likelihood from Incomplete Data Via the <i>EM</i> Algorithm 1977 A. P. Dempster
N. M. Laird
Donald B. Rubin
1
+ Perturbation Analysis of Optimization Problems 2000 J. Frédéric Bonnans
Alexander Shapiro
1
+ PDF Chat Proximal Markov chain Monte Carlo algorithms 2015 Marcelo Pereyra
1
+ PDF Chat Quasiconformal maps in metric spaces with controlled geometry 1998 Juha Heinonen
Pekka Koskela
1
+ PDF Chat RĂ©nyi Divergence and Kullback-Leibler Divergence 2014 Tim van Erven
Peter Harremoës
1
+ PDF Chat Polar factorization of maps on Riemannian manifolds 2001 Robert J. McCann
1
+ PDF Chat Ricci curvature for metric-measure spaces via optimal transport 2009 John Lott
CĂ©dric Villani
1
+ Eulerian Calculus for the Contraction in the Wasserstein Distance 2005 FĂ©lix Otto
Michael Westdickenberg
1
+ PDF Chat Regularizers for structured sparsity 2011 Charles A. Micchelli
Jean M. Morales
Massimiliano Pontil
1
+ PDF Chat Optimal Rates for the Regularized Least-Squares Algorithm 2006 Andrea Caponnetto
Ernesto De Vito
1
+ PDF Chat Topics in Optimal Transportation 2003 CĂ©dric Villani
1
+ Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media 2005 José A. Carrillo
Robert J. McCann
CĂ©dric Villani
1
+ PDF Chat Low-Rank Optimization on the Cone of Positive Semidefinite Matrices 2010 Michel Journée
Francis Bach
Pierre-Antoine Absil
Rodolphe Sepulchre
1
+ PDF Chat Existence and stability for Fokker–Planck equations with log-concave reference measure 2008 Luigi Ambrosio
Giuseppe Savaré
Lorenzo Zambotti
1
+ Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality 2000 FĂ©lix Otto
CĂ©dric Villani
1
+ On Divergences and Informations in Statistics and Information Theory 2006 Friedrich Liese
Igor Vajda
1
+ Polar factorization and monotone rearrangement of vector‐valued functions 1991 Yann Brenier
1
+ PDF Chat Clinical data based optimal STI strategies for HIV: a reinforcement learning approach 2006 Damien Ernst
Guy‐Bart Stan
Jorge Gonçalves
Louis Wehenkel
1
+ Spectral Regularization Algorithms for Learning Large Incomplete Matrices. 2010 Rahul Mazumder
Trevor Hastie
Robert Tibshirani
1
+ PDF Chat Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in $RCD (K, \infty)$ metric measure spaces 2013 Giuseppe SavarĂ©
1
+ A Generalized Kernel Approach to Structured Output Learning 2012 Hachem Kadri
Mohammad Ghavamzadeh
Pierre‐Marie Preux
1
+ Quasiconformal mappings and Sobolev spaces 1998 Pekka Koskela
Paul MacManus
1
+ Bakry–Émery curvature-dimension condition and Riemannian Ricci curvature bounds 2014 Luigi Ambrosio
Nicola Gigli
Giuseppe Savaré
1
+ Consistency of trace norm minimization 2007 Francis Bach
1
+ A New Approach to Collaborative Filtering: Operator Estimation with Spectral Regularization 2008 Jacob Abernethy
Francis Bach
Theodoros Evgeniou
Jean‐Philippe Vert
1