Cardinalities of $g$-difference sets
Cardinalities of $g$-difference sets
Let $\eta_{g}(n) $ be the smallest cardinality that $A\subseteq {\mathbb Z}$ can have if $A$ is a $g$-difference basis for $[n]$ (i.e, if, for each $x\in [n]$, there are {\em at least} $g$ solutions to $a_{1}-a_{2}=x$ ). We prove that the finite, non-zero limit $\lim\limits_{n\rightarrow \infty}\frac{\eta_{g}(n)}{\sqrt{n}}$ exists, answering a question …