Ask a Question

Prefer a chat interface with context about you and your work?

Numerical radius and $\ell_p$ operator norm of Kronecker products: inequalities and equalities

Numerical radius and $\ell_p$ operator norm of Kronecker products: inequalities and equalities

Suppose $A=[a_{ij}]\in \mathcal{M}_n(\mathbb{C})$ is a complex $n \times n$ matrix and $B\in \mathcal{B}(\mathcal{H})$ is a bounded linear operator on a complex Hilbert space $\mathcal{H}$. We show that $w(A\otimes B)\leq w(C),$ where $w(\cdot)$ denotes the numerical radius and $C=[c_{ij}]$ with $c_{ij}= w\left(\begin{bmatrix} 0& a_{ij}\\ a_{ji}&0 \end{bmatrix} \otimes B\right).$ This refines Holbrook's …