Memory Efficient Matting with Adaptive Token Routing
Memory Efficient Matting with Adaptive Token Routing
Transformer-based models have recently achieved outstanding performance in image matting. However, their application to high-resolution images remains challenging due to the quadratic complexity of global self-attention. To address this issue, we propose MEMatte, a memory-efficient matting framework for processing high-resolution images. MEMatte incorporates a router before each global attention block, …