Hyperdeterminantal Total Positivity
Hyperdeterminantal Total Positivity
For a given positive integer $m$, the concept of {\it hyperdeterminantal total positivity} is defined for a kernel $K:\R^{2m} \to \R$, thereby generalizing the classical concept of total positivity. Extending the fundamental example, $K(x,y) = \exp(xy)$, $x, y \in \mathbb{R}$, of a classical totally positive kernel, the hyperdeterminantal total positivity …